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Mechanism Design?
The reverse engineering of games

The art of designing the rules of a game to achieve a specific desired outcome
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Game

• 𝑁 = 1,⋯ , 𝑛 is a set of players

• Θ𝑖 is the set of all possible types (or private information) of player 𝑖.

• Each player 𝑖 has a type (private information) 𝜃𝑖 ∈ Θ𝑖 .

• 𝜽 = 𝜃1, ⋯ , 𝜃𝑛 is the type profile.

• The set of all type profiles is given by 𝚯 = Θ1 ×⋯× Θ𝑛.

• 𝑆𝑖 is the set of all possible strategies of player 𝑖.

• Each player 𝑖 decides his strategy 𝑠𝑖 : Θ𝑖 → 𝑆𝑖 according to his private information.

• 𝒔 = 𝑠1 ⋅ , ⋯ , 𝑠𝑛 ⋅ is the strategy profile.

• The set of all strategy profiles is given by 𝑺 = 𝑆1 ×⋯× 𝑆𝑛.
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Game

• Let 𝑌 be the set of all possible outcomes.

• 𝑔: 𝑺 → 𝑌 is an outcome function.

• 𝑢𝑖: 𝑌 × Θ𝑖 → ℝ is the utility function.

• We assume that 𝑢𝑖 does not depend on the private information of the other players

• WLOG, every player wants to maximize the utility

• Common knowledge: 𝑁,𝚯, 𝑺, 𝑌, 𝑔, 𝑢𝑖 𝑖=1,⋯,𝑛
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There can be a prior knowledge on the distribution of 𝚯.

This is a (incomplete information) strategic form game. 



Dominant Strategy

• Let 𝑺−𝑖 = 𝑆1 ×⋯𝑆𝑖−1 × 𝑆𝑖+1 ×⋯× 𝑆𝑛 and 𝒔−𝑖 = 𝑠1, ⋯ , 𝑠𝑖−1, 𝑠𝑖+1, ⋯ , 𝑠𝑛 . 

Similarly, let 𝜽−𝑖 = 𝜃1, ⋯ , 𝜃𝑖−1, 𝜃𝑖+1, ⋯ , 𝜃𝑛

• A strategy 𝑠𝑖
∗ ⋅ ∈ 𝑆𝑖 is a dominant strategy for agent 𝑖 if, for every other 

strategy 𝑠𝑖 ⋅ ∈ 𝑆𝑖, for any type profile 𝜽 = 𝜃𝑖 , 𝜽−𝑖 ∈ 𝚯, for all 𝒔−𝑖 ∈ 𝑺−𝑖,

𝑢𝑖 𝑔 𝑠𝑖
∗ 𝜃𝑖 , 𝒔−𝑖 𝜽−𝑖 , 𝜃𝑖 ≥ 𝑢𝑖 𝑔 𝑠𝑖 𝜃𝑖 , 𝒔−𝑖 𝜽−𝑖 , 𝜃𝑖 .
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sticking to a dominant strategy makes his utility greater than (or equal to) 

that of doing another strategy no matter what other players do.

outcome of playing a dominant strategy outcome of playing another strategy



Dominant Strategy Equilibrium

• A strategy profile 𝒔∗ ⋅ = 𝑠1
∗ ⋅ ,⋯ , 𝑠𝑛

∗ ⋅ is a dominant strategy equilibrium

if, the strategy 𝑠𝑖
∗ ⋅ is a dominant strategy for agent 𝑖.

• sometimes, we just say this strategy profile is a dominant strategy.
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Mechanism Design Problem

• Setting: : 𝑁,𝚯, 𝑌, 𝑢𝑖 𝑖=1,⋯,𝑛

• Mechanism ℳ = (𝑺 = 𝑆1,⋯ , 𝑆𝑛 , 𝑔)

• The principal (or designer) designs 𝑺 and 𝑔.

• Each agent (or player) plays a game induced by the mechanism.

• Recall. Each player 𝑖 decides what to do, given 𝑁,𝚯, 𝑺, 𝑌, 𝑔, 𝑢𝑖 and his type 𝜃𝑖.

• What properties do we want ℳ to satisfy? 

Does it lead to the desired result?
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Property 1
Dominant Strategy Incentive Compatible
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Implementation in dominant strategies

• A social choice function (SCF) 𝑓:𝚯 → 𝑌 maps a type profile to an outcome.

• Mechanism 𝑺, 𝑔 implements 𝑓 in dominant strategies if there is a strategy 

profile 𝒔∗ that is a dominant strategy equilibrium of the induced game s.t.

𝑔 𝑠1
∗ 𝜃1 , ⋯ , 𝑠𝑛

∗ 𝜃𝑛 = 𝑓 𝜃1, ⋯ , 𝜃𝑛

for all type profile 𝜃1, ⋯ , 𝜃𝑛 ∈ 𝚯.

Q. Consider a specific SCF. What are the characteristics of mechanism that 

can implement it in dominant strategies?
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Direct Revelation Principle

• Difficult to consider infinite number of mechanisms

• infinite ways to define strategies and the outcome function

• The direct revelation principle allows us to restrict our attention to direct 

mechanisms!
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Direct Revelation Mechanism

• We say a mechanism (𝑺, 𝑔) is a direct (revelation) mechanism if 𝑺 = 𝚯

• The strategy is to directly report a candidate type in 𝜃𝑖.

• This implies that 𝑔 is a SCF (𝑔:𝚯 → 𝑌).

• Direct revelation principle. Let ℳ = 𝑺, 𝑔 implements some 𝑓 in dominant 

strategies. Then there exists a direct mechanism ℳ′ that implements 𝑓 in 

dominant strategies.
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Proof (by construction)

• Let 𝒔∗ be a strategy profile that is a dominant strategy equilibrium in ℳ.

• We define ℳ′ = 𝚯,𝑔′ as follow:

• the strategy is to directly report one of 𝜃𝑖; (Thus, strategy is no longer a function;)

• 𝑔′: 𝚯 → 𝑌 be the outcome function where 𝑔′ 𝜃1, ⋯ , 𝜃𝑛 = 𝑔 𝑠1
∗ 𝜃1 , ⋯ , 𝑠𝑛

∗ 𝜃𝑛 .

• ℳ′ implements 𝑓 in dominant strategies since 𝜽 is a dominant strategy 

equilibrium that satisfies 𝑔′ 𝜽 = 𝑔 𝒔∗ 𝜽 = 𝑓(𝜽).

• Note. ℳ′ = 𝚯, 𝑓 .
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Dominant Strategy Incentive Compatible

• Direct revelation principle. Let ℳ = 𝑺, 𝑔 implements some 𝑓 in dominant 

strategies. Then there exists a direct mechanism ℳ′ that truthfully

implements 𝑓 in dominant strategies.

• We say a mechanism is dominant-strategy incentive-compatible (DSIC) if 

truth telling is a dominant strategy for every agent.
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Is DSIC enough?
Does DSIC mechanism lead to a desired situation?

Gibbard-Satterthwaite (Impossibility) Theorem
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Gibbard-Satterthwaite Theorem

• The SCF 𝑓 is dictatorial if there is an agent 𝑖 s.t. for all type profile 𝜽 ∈ 𝚯,

𝑓 𝜽 ∈ 𝑦′ ∈ 𝑌 ∶ 𝑢𝑖 𝑦
′, 𝜃𝑖 ≥ 𝑢𝑖 𝑦, 𝜃𝑖 , ∀𝑦 ∈ 𝑌

• Simply, 𝑖 is a dictator if 𝑢𝑖 𝑓 𝜽 , 𝜃𝑖 ≥ 𝑢𝑖 𝑦, 𝜃𝑖 for all 𝜽 and 𝑦.

• Gibbard-Satterthwaite Theorem. Suppose 𝑌 ≥ 3, agents can have any 

preference, and 𝑓 is an onto mapping. Then 𝚯, 𝑓 is DSIC if and only if 𝑓 is 

dictatorial.
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agent 𝑖 prefers the outcome 𝑦′
the SCF always chooses the outcome 

that agent 𝑖 prefers



Restriction on Environment
Uni-dimensional type. Quasilinear utility.
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Quasilinear Environment w/ WBB

• Consider we want to allocate some goods to agents.

• Let 𝑋 be the set of possible allocations.

• Assume 𝑥 ∈ 𝑋 is a vector with 𝑛 elements, describing the allocation to each agent.

• Each agent 𝑖’s type 𝜃𝑖 is a one dimensional.

• i.e., each agent 𝑖 has a (private) valuation 𝜃𝑖 𝑥 for each outcome 𝑥 ∈ 𝑋.

• 𝜃𝑖: 𝑋 → ℝ

• Each agent transfers 𝑝𝑖 𝜽 amount of money to the mechanism.

• Given an allocation and his type, his utility is defined as 𝑢𝑖(𝑥, 𝜃𝑖) = 𝜃𝑖 𝑥 − 𝑝𝑖 𝜽 .

• σ𝑖 𝑝𝑖 𝜽
′ ≥ 0, i.e., weakly budget balanced (WBB)
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quasilinear utility



Mechanism Perspective

• Setting: : 𝑁, Θ𝑖 𝑖=1,⋯,𝑛 , 𝑋, 𝑃𝑖 𝑖=1,⋯,𝑛 , 𝑢𝑖 𝑖=1,⋯,𝑛

• Mechanism ℳ = Θ1, ⋯ , Θ𝑛, 𝑓 = 𝑥, 𝑝𝑖 𝑖=1,⋯,𝑛

• Mechanism announces 𝑓, i.e., how to allocate and how much to transfer.

• Each agents 𝑖 reports 𝜃𝑖
′. Let 𝜽′ = 𝜃1

′ , ⋯ , 𝜃𝑛
′ be the reported type profile.

• Mechanism do the allocation 𝑥 𝜽′ ∈ 𝑋

• Each agent 𝑖 pays 𝑝𝑖 𝜽′ to the mechanism.

• Again, we need to satisfy WBB, i.e., σ𝑖 𝑝𝑖 𝜽
′ ≥ 0.
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No dictator in quasilinear setting w/ WBB

• Fix any mechanism and let 𝑥∗ be the allocation rule and the payment rule 𝑝∗.

• Suppose 𝑑 is a dictator. Then for all 𝜽 ∈ 𝚯 and for all possible 𝑥 and 𝑝,

𝜃𝑑 𝑥∗ 𝜽 − 𝑝𝑑
∗ 𝜽 ≥ 𝜃𝑑 𝑥 𝜽 − 𝑝𝑑 𝜽 .

Consider the following payment rule 𝑝′.

- Case σ𝑖 𝑝𝑖
∗ 𝜽 > 0.

𝑝𝑖
′ 𝜽 ≔ 𝑝𝑖

∗ 𝜽 𝑖𝑓 𝑖 ≠ 𝑑, 𝑝𝑑
′ 𝜽 ≔ 𝑝𝑑

∗ 𝜽 − σ𝑖 𝑝𝑖
∗ 𝜽

With 𝑥∗, 𝑝′ , we have 𝜃𝑑 𝑥∗ 𝜽 − 𝑝𝑑
′ 𝜽 = 𝜃𝑑 𝑥∗ 𝜽 − 𝑝𝑑

∗ 𝜽 + σ𝑖 𝑝𝑖
∗ 𝜽
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No dictator in quasilinear setting w/ WBB

• Fix any mechanism and let 𝑥∗ be the allocation rule and the payment rule 𝑝∗.

• Suppose 𝑑 is a dictator. Then for all 𝜽 ∈ 𝚯 and for all possible 𝑥 and 𝑝,

𝜃𝑑 𝑥∗ 𝜽 − 𝑝𝑑
∗ 𝜽 ≥ 𝜃𝑑 𝑥 𝜽 − 𝑝𝑑 𝜽 .

Consider the following payment rule 𝑝′.

- Case σ𝑖 𝑝𝑖
∗ 𝜽 = 0. For any 𝑗 ≠ 𝑑,

𝑝𝑖
′ 𝜽 ≔ 𝑝𝑖

∗ 𝜽 𝑖𝑓 𝑖 ≠ 𝑑, 𝑗, 𝑝𝑑
′ 𝜽 ≔ 𝑝𝑑

∗ 𝜽 + 𝜖, 𝑝𝑗
′ 𝜽 ≔ 𝑝𝑗

∗ 𝜽 − 𝜖

With 𝑥∗, 𝑝′ , we have 𝜃𝑑 𝑥∗ 𝜽 − 𝑝𝑑
′ 𝜽 = 𝜃𝑑 𝑥∗ 𝜽 − 𝑝𝑑

∗ 𝜽 + 𝜖
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Desired Situation
Social Welfare Maximization
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Efficient (welfare-maximizing)

• We say a mechanism is efficient if it maximizes the welfare of the society.

• In some literature, they say “social optimal”

• We say a mechanism is optimal if it maximizes the revenue of the principal.

• Under this “quasilinear” environment, 

is there an efficient DSIC mechanism?

• YES!
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Efficient, DSIC Mechanism?
Vickrey-Clarke-Groves (VCG) Mechanism
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VCG Mechanism

• Part 1. Define an allocation rule

• Given reported type profile 𝜽′, let 𝑥∗ be the allocation rule defined by

𝑥∗ 𝜽′ ∈ argmax
𝑥∈𝑋



𝑖=1

𝑛

𝜃𝑖
′ 𝑥 𝜽′ .

• If all agents report truthfully, this allocation makes the mechanism efficient.

• We say this allocation is efficient.

• More specifically, ex-post efficient.
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VCG Mechanism

• Part 2. Define a payment rule

• Given reported type profile 𝜽′, let 𝑝𝑖 be the payment rule defined by

𝑝𝑖 𝜽
′ = max

𝑥∈𝑋


𝑗≠𝑖

𝜃𝑗
′ 𝑥 𝜽−𝑖

′ −

𝑗≠𝑖

𝜃𝑗
′ 𝑥∗ 𝜽′ .

• This payment is the “externality” caused by an agent 𝑖.
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Total welfare except for the 

welfare that agent 𝑖 makes 

in the efficient allocation

Total welfare in efficient 

allocation of 𝜃−𝑖
′ (assuming agent 𝑖

was not included at the first place)



VCG Mechanism

• Part 3. Truth telling is a dominant strategy for every agent.

• Suppose not. Fix 𝑖. This implies that 𝜃𝑖 is not a dominant strategy.

• There exists a strategy profile 𝜽′ such that, given 𝜽−𝑖
′ , it is better to report 

𝜃𝑖
′ instead of 𝜃𝑖 , i.e.,

𝑢𝑖 𝑥
∗ 𝜃𝑖 , 𝜽−𝑖

′ , 𝜃𝑖 < 𝑢𝑖 𝑥
∗ 𝜃𝑖

′, 𝜽−𝑖
′ , 𝜃𝑖

𝜃𝑖 𝑥
∗ 𝜃𝑖 , 𝜽−𝑖

′ − 𝑝𝑖 𝜃𝑖 , 𝜽−𝑖
′ < 𝜃𝑖 𝑥

∗ 𝜃𝑖
′, 𝜽−𝑖

′ − 𝑝𝑖 𝜃𝑖
′, 𝜽−𝑖

′
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VCG Mechanism

𝜃𝑖 𝑥
∗ 𝜃𝑖 , 𝜽−𝑖

′ − 𝑝𝑖 𝜃𝑖 , 𝜽−𝑖
′ < 𝜃𝑖 𝑥

∗ 𝜃𝑖
′, 𝜽−𝑖

′ − 𝑝𝑖 𝜃𝑖
′, 𝜽−𝑖

′

• Recall 𝑝𝑖 𝜽′ = max
𝑥∈𝑋

σ𝑗≠𝑖 𝜃𝑗
′ 𝑥 𝜽−𝑖

′ − σ𝑗≠𝑖 𝜃𝑗
′ 𝑥∗ 𝜽′ .

• We substitute 𝑝𝑖 𝜃𝑖 , 𝜽−𝑖
′ and 𝑝𝑖 𝜃𝑖

′, 𝜽−𝑖
′ . 

• Note that max
𝑥∈𝑋

σ𝑗≠𝑖 𝜃𝑗
′ 𝑥 𝜽−𝑖

′ does not depend on agent 𝑖’s report.
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VCG Mechanism

𝜃𝑖 𝑥
∗ 𝜃𝑖 , 𝜽−𝑖

′ +
𝑗≠𝑖

𝜃𝑗
′ 𝑥∗ 𝜃𝑖 , 𝜽−𝑖

′

< 𝜃𝑖 𝑥
∗ 𝜃𝑖

′, 𝜽−𝑖
′ +

𝑗≠𝑖
𝜃𝑗
′ 𝑥∗ 𝜃𝑖

′, 𝜽−𝑖
′

• Recall 𝑥∗ 𝜽′ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑋 σ𝑖=1
𝑛 𝜃𝑖

′ 𝑥 𝜽′ .

𝑥∗ 𝜃𝑖 , 𝜽−𝑖
′ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑋 𝜃𝑖 𝑥 𝜃𝑖 , 𝜽−𝑖

′ +

𝑗≠𝑖

𝜃𝑗
′ 𝑥 𝜃𝑖 , 𝜽−𝑖

′
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Total welfare in the efficient

allocation of 𝜃𝑖 , 𝜃−𝑖
′

Total welfare in some

allocation of 𝜃𝑖 , 𝜃−𝑖
′ since



Payment in VCG Mechanism

𝑝𝑖 𝜽
′ = max

𝑥∈𝑋


𝑗≠𝑖

𝜃𝑗
′ 𝑥 𝜽−𝑖

′ −

𝑗≠𝑖

𝜃𝑗
′ 𝑥∗ 𝜽′ .

• Assuming (natural assumptions), 𝑝𝑖 ≥ 0, which implies no subsidy needed.

• Note. The first term can be replaced by some function ℎ𝑖 𝜽−𝑖
′ that does 

not depend on 𝑖’s type.

𝑝𝑖 𝜽
′ = ℎ𝑖 𝜽−𝑖

′ −

𝑗≠𝑖

𝜃𝑗
′ 𝑥∗ 𝜽′
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Clarke Mechanism

or pivot Mechanism

Groves Mechanism



Example
Auctions, Bilateral Trade
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Auction Design

• Setting

- Single item

- Utility of each bidder: 𝜃𝑖 − 𝜃𝑖
′ if wins, and 0 otherwise. 

- Bidders can bid any amount of money.

• but no reason to bid higher than his true valuation (type).

• How to design an auction so that it is efficient DSIC?

• Recall, we only need to consider a direct mechanism.

• Given bids, how should we allocate the item and how much should bidders pay?
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Auction Design

• Allocation? 

- To the highest bidder. (Efficient)

• Payment?

• Let 𝑖 be the winner, i.e., a bidder with highest bid.

- The total welfare in an efficient allocation of 𝜽−𝑖
′ = the second highest bid.

- The total welfare except for 𝑖 in an efficient allocation of 𝜃′ = 0.

• Let 𝑖 be a loser. He pays 0.

• Payment: The winner pays the second highest bid; other pays 0.
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Auction Design

• This is a special case of Clarke mechanism and thus efficient and DSIC.

• and WBB also.

• This is called Vickrey auction or second-price (sealed-bid auction).
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First-Price Auction

• To whom do I allocate? To the highest bidder.

• Payment? Winner pays the highest bid.

• This is not VCG mechanism.

• The payment here does not fit VCG payment function.

• This does not mean that there is no efficient DSIC mechanism.

• Indeed, there is no DSIC mechanism for this auction.
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Combinatorial Auction

• setting:

- 𝑚 non-identical items

- each agent has 2𝑚 private valuation

• Define efficient allocation and Clarke payment

• This auction is efficient and DSIC and WBB.
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Bilateral Trade

• Setting:

- one item, buyer and seller (two agents), utility same as before

- private valuation 𝜃𝑏 , 𝜃𝑠 ∈ 0,1 , respectively.

• Allocation: 

- if 𝜃𝑏
′ > 𝜃𝑠

′, give the item to the buyer; otherwise give the item to the seller

• Payment:

- 𝑝𝑏 𝜃𝑏
′ , 𝜃𝑠

′ = 𝜃𝑠
′ ⋅ 𝕀 𝜃𝑏

′ > 𝜃𝑠
′ , 𝑝𝑠 𝜃𝑏

′ , 𝜃𝑠
′ = 𝜃𝑏

′ ⋅ 𝕀 𝜃𝑠
′ ≥ 𝜃𝑏

′
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Seller pays to keep the good.

No reason to join the mechanism!



More about VCG
Individual Rationality
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Individual Rationality (IR)

• Let 𝓊𝑖 𝜃𝑖 be the utility of withdrawing from the mechanism. 

• In Vickrey auction, 𝓊𝑖 𝜃𝑖 = 0

• In bilateral trade, for the seller, 𝓊𝑠 𝜃𝑠 = 𝜃𝑠

• A mechanism is ex-post individual rational if 𝑢𝑖 𝑓 𝜽 , 𝜃𝑖 ≥ 𝓊𝑖 𝜃𝑖 for all 𝑖

and for all 𝜽 = 𝜃𝑖 , 𝜽−𝑖 .
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Clarke Mechanism

• Under some natural assumptions and 𝓊𝑖 ⋅ = 0,

the Clarke Mechanism is ex-post individual rational.

• Combinatorial Auction corresponds to this mechanism.

• Clarke Mechanism is ex-post efficient, DSIC, WBB and ex-post IR.
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Limitations
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Limitation

• Some games have no dominant strategy equilibrium. 

We need “Bayesian” equilibrium.

• Rock & Scissor & Paper, First-price auction

• (Very) Restricted Environment

• Computational Limitation.

• Unless 𝑃 = 𝑁𝑃, no polynomial time algorithm finds an allocation/payment rule.

• Also, for agents, even hard to list all the valuations to the mechanism.

• Different objectives

• optimal (revenue-maximizing) mechanism
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Textbook of Y. Narahari. 
“Game Theory and Mechanism Design” 사진찍기..?
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