Mechanism Design

Reinterpreting Optimal Auction

2023-04-03

The Simple Economics of Optimal Auctions

- Journal of Political Economy (1989)

Part 1 Optimal Auction Problem

Part 2 Construction of Optimal Auction

Part 3 Price Discriminating Monopoly

Part 4

Reinterpretation

- Maximize the seller's expected profit (Vickrey, 1961) Then... what is auction?
- Auction setting
 - Seller values an item at 0
 - *n* risk-neutral, symmetric bidders
 - Each bidder knows only their own value v (sealed-bid)
 - First-price: highest bidder wins and pays his value
 - Second-price: highest bidder wins and pays the second-highest value

- Maximize the seller's expected profit (Vickrey, 1961) Then... what is auction?
- Auction setting
 - Seller values an item at 0
 - *n* risk-neutral, symmetric bidders
 - Each bidder knows only their own value v (sealed-bid)
 - First-price: highest bidder wins and pays his value
 - Second-price: highest bidder wins and pays the second-highest value

Underbid: not to be the high bidder although his value is the highest

Bid more: pay more than his value

Underbid: not to be the high bidder although his value is the highest

Bid more: pay more than his value

 \rightarrow Dominant strategy of bidding his <u>true value</u>

Optimal Auction Problem: first-price

For the rest of the section, we assume all the auctions are second-price!

Extension (Myerson, 1981)

- Asymmetric bidders: probability distribution of values to be <u>common knowledge</u>
- <u>All possible</u> ways of selling the goods

ascending, descending oral auctions, all-pay auctions, and many more...

 \rightarrow Simplification!!

insights on revelation principle

Direct revelation mechanism

- ensure buyers are willing to participate
- ensure buyers to announce his true valuation

→ Simple constrained maximization problem

Simple constrained maximization problem

- Maximize the seller's expected revenues
- <u>Participation constraint</u>: bidder receive non-negative expected surplus
- Incentive constraint: reveal their true valuations

Maximize the seller's expected revenue

Expected revenue: 11.25

How to construct a mechanism with maximum possible expected revenue?

- For each bidder, graph the inverse of his F_i function
 - Value v on the Y-axis (price)
 - Prob. $q \equiv 1 F_i(v)$ on the X-axis (quiantity)
- → Demand curve

- For each bidder, graph the inverse of his F_i function
 - Value v on the Y-axis (price)
 - Prob. $q \equiv 1 F_i(v)$ on the *X*-axis (quiantity)
- → Demand curve

- Demand curve
 - Value v on the Y-axis (price)
 - Prob. $q \equiv 1 F_i(v)$ on the *X*-axis (quiantity)
- Marginal revenue curve
 - Multiply quantity times price
 - $q = 1 F_i(v)$
 - $v = F_i^{-1}(1-q)$

$$MR_i(v) = v - \frac{1 - F_i(v)}{f_i(v)}$$

* Recall that we assumed that marginal revenue is monotonic (downward sloping)

- Demand curve
 - Value v on the Y-axis (price)
 - Prob. $q \equiv 1 F_i(v)$ on the X-axis (quiantity)
- Marginal revenue curve
 - Multiply quantity times price
 - $q = 1 F_i(v)$
 - $v = F_i^{-1}(1-q)$

$$MR_i(v) = v - \frac{1 - F_i(v)}{f_i(v)}$$

- Demand curve & marginal revenue curve
- Second marginal revenue auction
 - 1) each bidder announces his value

My value is v!!!

- Demand curve & marginal revenue curve
- Second marginal revenue auction

2) value \rightarrow marginal revenue

- Demand curve & marginal revenue curve
- Second marginal revenue auction

3) Bidder with the highest marginal revenue wins!

- Demand curve & marginal revenue curve
- Second marginal revenue auction

3') No bidder with a non-negative marginal revenue

- Demand curve & marginal revenue curve
- Second marginal revenue auction
 - * Auction with only one bidder

- Demand curve & marginal revenue curve
- Second marginal revenue auction

- Demand curve & marginal revenue curve
- Second marginal revenue auction
 - Symmetric bidders: equivalent to a second-price auction
 - Asymmetric bidders: not necessarily (highest price) = (highest marginal revenue)

- Demand curve & marginal revenue curve
- Second marginal revenue auction
 - Symmetric bidders: equivalent to a second-price auction
 - Asymmetric bidders: not necessarily (highest price) = (highest marginal revenue)
- How should I pay?

• Second marginal revenue auction

• Second marginal revenue auction

• Second marginal revenue auction

Second marginal revenue auction

• Second marginal revenue auction

• Second marginal revenue auction

- Demand curve & marginal revenue curve
- Second marginal revenue auction
 - Symmetric bidders: equivalent to a second-price auction
 - Asymmetric bidders: not necessarily (highest price) = (highest marginal revenue)
- How should I pay?

- Demand curve & marginal revenue curve
- Second marginal revenue auction
 - Symmetric bidders: equivalent to a second-price auction
 - Asymmetric bidders: not necessarily (highest price) = (highest marginal revenue)
- Pay $MR_i(M_2)$ where M_2 is the second-highest marginal revenue

- Can generalize to an optimal mechanism of...
 - Seller sells k identical goods
 - Each buyer wants only one unit
- \rightarrow (k + 1)st marginal revenue auction

- Demand curve & marginal revenue curve
- Second marginal revenue auction
 - Symmetric bidders: equivalent to a second-price auction
 - Asymmetric bidders: not necessarily (highest price) = (highest marginal revenue)

- Third-degree monopoly price discrimination problem
 - Monopolist who sells in n different markets
 - Monopolist of capacity of
 Q units (marginal cost 0 up to
 Q units)
 Q is a random variable in [*Q*, *Q*] that takes on the value *Q* with probability *h*(*Q*)
 - Each customer (=buyer) buys at most one unit
 - Customers in market *i* have values in $[\underline{v}_i, \overline{v}_i]$ (values as <u>common knowledge</u>) $F_i(v)$ customers have a value $\leq v$

- Third-degree monopoly price discrimination problem
 - Monopolist who sells in n different markets
 - Monopolist of capacity of \$\tilde{Q}\$ units (marginal cost 0 up to \$\tilde{Q}\$ units)
 \$\tilde{Q}\$ is a random variable in \$\begin{bmatrix} Q, \overline{Q}\$ that takes on the value \$Q\$ with probability \$h(Q)\$
 - Each customer (=buyer) buys at most one unit
 - Customers in market *i* have values in $[\underline{v}_i, \overline{v}_i]$ (values as <u>common knowledge</u>) $F_i(v)$ customers have a value $\leq v$

 \rightarrow Maximize her expected profit by choosing <u>price</u> in each market

* Recall that we assumed that marginal revenue is monotonic (downward sloping)

- Third-degree monopoly price discrimination problem
 - Price depends on the capacity Q
 - $p_i(v, Q) \coloneqq$ prob. that a buyer in market *i* with value *v* acquires a unit if the monopolist's capacity is *Q*

- Third-degree monopoly price discrimination problem
 - Price depends on the capacity Q
 - $p_i(v, Q) \coloneqq$ prob. that a buyer in market *i* with value *v* acquires a unit if the monopolist's capacity is *Q*

- Third-degree monopoly price discrimination problem
 - Price depends on the capacity *Q*
 - $p_i(v, Q) \coloneqq$ prob. that a buyer in market *i* with value *v* acquires a unit if the monopolist's capacity is *Q*

•
$$p_i(v, Q) = \begin{cases} 1 & \text{the monopolist chooses a price } \leq v \\ 0 & \text{the monopolist chooses a price } > v \end{cases}$$

• Unconditional prob. of
$$p_i(v, Q)$$

 $\overline{p}_i(v) \equiv \int_{\underline{Q}}^{\overline{Q}} p_i(v, Q)h(Q)dQ$

- Third-degree monopoly price discrimination problem
- The expected social value of the units sold: (buyers' expected consumer surplus)+(monopolist's expected revenues)

- The expected social value of the units sold: (buyers' expected consumer surplus)+(monopolist's expected revenues)
- Maximize monopolist's expected revenue:
 (expected social values) (expected <u>consumer's surplus</u>).
- Expected social values

$$\int_{\underline{Q}}^{\overline{Q}} h(Q) \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} v f_{i}(v) p_{i}(v,Q) dv dQ$$

- The expected social value of the units sold: (buyers' expected consumer surplus)+(monopolist's expected revenues)
- Maximize monopolist's expected revenue:
 (expected social values) (expected <u>consumer's surplus</u>).
- Expected social values

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} v f_{i}(v) \overline{p}_{i}(v) dv$$

- The expected social value of the units sold: (buyers' expected consumer surplus)+(monopolist's expected revenues)
- Maximize monopolist's expected revenue:
 (expected social values) (expected <u>consumer's surplus</u>).

- The expected social value of the units sold: (buyers' expected consumer surplus)+(monopolist's expected revenues)
- Maximize monopolist's expected revenue:
 (expected social values) (expected <u>consumer's surplus</u>).

- Maximize monopolist's expected revenue:
 (expected social values) (expected <u>consumer's surplus</u>).
 - Monopolist demand curve: $p_i = 100 q_i$
 - Capacity: uniform distribution in [0,100]

- Maximize monopolist's expected revenue:
 (expected social values) (expected <u>consumer's surplus</u>).
 - Monopolist demand curve: $p_i = 100 q_i$
 - Capacity: uniform distribution in [0,100]

- Maximize monopolist's expected revenue:
 (expected social values) (expected <u>consumer's surplus</u>).
 - Monopolist demand curve: $p_i = 100 q_i$
 - Capacity: <u>uniform distribution</u> in [0,100]

(100) $\overline{v_i}$

- Maximize monopolist's expected revenue:
 (expected social values) (expected <u>consumer's surplus</u>)
- Total expected consumer surplus

$$\int_{\underline{Q}}^{\overline{Q}} h(Q) \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) \int_{\underline{v}_{i}}^{v} p_{i}(x,Q) dx dv dQ$$

- Maximize monopolist's expected revenue:
 (expected social values) (expected <u>consumer's surplus</u>)
- Total expected consumer surplus

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) \int_{\underline{v}_{i}}^{v} \overline{p}_{i}(x) dx dv$$

- Maximize monopolist's expected revenue:
 (expected social values) (expected <u>consumer's surplus</u>)
- Expected social values

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} v f_{i}(v) \overline{p}_{i}(v) dv$$

• Total expected consumer surplus

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) \int_{\underline{v}_{i}}^{v} \overline{p}_{i}(x) dx dv$$

Maximize monopolist's expected revenue:
 (expected social values) – (expected <u>consumer's surplus</u>)

subject to the constraint to capacity:

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) p_{i}(v, Q) dv \leq Q$$

Maximize monopolist's expected revenue:
 (expected social values) – (expected <u>consumer's surplus</u>).

$$\pi(Q) = \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} v f_{i}(v) p_{i}(v, Q) dv - \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) \int_{\underline{v}_{i}}^{v} p_{i}(x, Q) dx dv$$

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) p_{i}(v, Q) dv \leq Q$$

Maximize monopolist's expected revenue:
 (expected social values) – (expected <u>consumer's surplus</u>).

$$\pi(Q) = \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} v f_{i}(v) p_{i}(v, Q) dv - \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) \int_{\underline{v}_{i}}^{v} p_{i}(x, Q) dx dv$$

befines $z(v, x) = \begin{cases} 1 & x \leq v \\ 0 & x > v \end{cases}$

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) p_{i}(v, Q) dv \leq Q$$

subject [·]

Maximize monopolist's expected revenue:
 (expected social values) – (expected <u>consumer's surplus</u>)

$$\pi(Q) = \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} v f_{i}(v) p_{i}(v, Q) dv - \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) p_{i}(x, Q) z(v, x) dx dv$$

Defines $z(v, x) = \begin{cases} 1 & x \leq v \\ 0 & x > v \end{cases}$
subject to:

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) p_{i}(v, Q) dv \leq Q$$

Maximize monopolist's expected revenue:
 (expected social values) – (expected <u>consumer's surplus</u>)

$$\pi(Q) = \sum_{i=1}^{n} \int_{\underline{v}_i}^{\overline{v}_i} v f_i(v) p_i(v, Q) dv - \sum_{i=1}^{n} \int_{\underline{v}_i}^{\overline{v}_i} [1 - F_i(v)] p_i(v, Q) dv$$

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) p_{i}(v, Q) dv \leq Q$$

Maximize monopolist's expected revenue:
 (expected social values) – (expected <u>consumer's surplus</u>).

$$ER = \sum_{i=1}^{n} \int_{\underline{v}_i}^{\overline{v}_i} \left[v - \frac{1 - F_i(v)}{f_i(v)} \right] f_i(v) p_i(v, Q) dv$$

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) p_{i}(v, Q) dv \leq Q$$

Maximize monopolist's expected revenue:
 (expected social values) – (expected <u>consumer's surplus</u>)

$$ER = \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} MR_{i}(v) f_{i}(v) p_{i}(v, Q) dv$$

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) p_{i}(v, Q) dv \leq Q$$

- Recall both optimal auction and monopoly problem
 - No buyer/customer pay a price below \underline{v}
 - Payment with respect to the marginal revenue

- Assumptions in common
 - No resale
 - Risk neutrality

- Target
 - Maximize seller's expected revenue
 - Maximize monopolist's expected revenue
- Basic notations
 - *n*: number of bidders
 - *n*: number of markets
 - $F_i(v)$: prob. that buyer *i*'s value < v
 - $F_i(v)$: number of buyers in market *i* with value < v

- Target
 - Maximize seller's expected revenue
 - Maximize monopolist's expected revenue
- Prob. that a buyer with value v in market i wins (in auction, ith bidder)
 - Function of the values of all the bidders: $E(p_i(v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_n))$
 - Function of his value and the quantity

- Target
 - Maximize seller's expected revenue
 - Maximize monopolist's expected revenue
- Prob. that ith bidder with value v wins
 - $\overline{p}_i(v) \coloneqq E(p_i(v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_n))$
 - \rightarrow Unconditional prob. that the bidder with distribution F_i receives the good

• Prob. that ith bidder with value v wins

•
$$\overline{p}_i(v) \coloneqq E(p_i(v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_n))$$

 \rightarrow Unconditional prob. that the bidder with distribution F_i receives the good

• Prob. that ith bidder with value v wins

•
$$\overline{p}_i(v) \coloneqq E(p_i(v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_n))$$

 \rightarrow Unconditional prob. that the bidder with distribution F_i receives the good

• Define $S_i(v)$ as the expected surplus of the bidder *i* with value *v*

$$\frac{\partial S_i(v)}{\partial v} = \overline{p}_i(v) \ge 0$$
• Prob. that *i*th bidder with value v wins

•
$$\overline{p}_i(v) \coloneqq E(p_i(v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_n))$$

 \rightarrow Unconditional prob. that the bidder with distribution F_i receives the good

• Define $S_i(v)$ as the expected surplus of the bidder *i* with value *v*

$$\frac{\partial S_i(v)}{\partial v} = \overline{p}_i(v) \ge 0$$

- Prob. that ith bidder with value v wins
 - $\overline{p}_i(v) \coloneqq E(p_i(v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_n))$

 \rightarrow Unconditional prob. that the bidder with distribution F_i receives the good

• Define $S_i(v)$ as the expected surplus of the bidder *i* with value *v*

$$\int_{\underline{v}_i}^{v} \overline{p}_i(x) dx$$

• Prob. that ith bidder with value v wins

•
$$\overline{p}_i(v) \coloneqq E(p_i(v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_n))$$

 \rightarrow Unconditional prob. that the bidder with distribution F_i receives the good

• Total expected surplus of all the bidders

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) \int_{\underline{v}_{i}}^{v} \overline{p}_{i}(x) dx dv$$

...surprisingly, the same with the monopoly problem!!

Maximize

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} v f_{i}(v) \overline{p}_{i}(v) dv - \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) \int_{\underline{v}_{i}}^{v} \overline{p}_{i}(x) dx dv$$

$$\sum_{i=1}^n p_i(v_1, \dots, v_n) \leq 1$$

Maximize

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} v f_{i}(v) \overline{p}_{i}(v) dv - \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) \int_{\underline{v}_{i}}^{v} \overline{p}_{i}(x) dx dv$$

$$\sum_{i=1}^n p_i(v_1,\ldots,v_n) \leq 1$$

Maximize

$$\sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} v f_{i}(v) \overline{p}_{i}(v) dv - \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} f_{i}(v) \int_{\underline{v}_{i}}^{v} \overline{p}_{i}(x) dx dv$$

$$\sum_{i=1}^n p_i(v_1,\ldots,v_n) \leq 1$$

Maximize

$$ER = \sum_{i=1}^{n} \int_{\underline{v}_{i}}^{\overline{v}_{i}} MR_{i}(v)f_{i}(v)\overline{p}_{i}(v)dv - K$$

$$\sum_{i=1}^n p_i(v_1, \dots, v_n) \leq 1$$

Maximize

ER = expected MR of winning bidder -K

$$\sum_{i=1}^n p_i(v_1, \dots, v_n) \leq 1$$

Maximize

Consumer surplus

ER = expected MR of winning bidder -K

$$\sum_{i=1}^{n} p_i(v_1, \dots, v_n) \le 1$$

Maximize

ER = expected MR of winning bidder -0

subject to

$$\sum_{i=1}^{n} p_i(v_1, \dots, v_n) \le 1$$

 \rightarrow Optimal auction

Maximize

ER = expected MR of winning bidder -0

subject to

$$\sum_{i=1}^{n} p_i(v_1, \dots, v_n) \le 1$$

 \rightarrow Optimal auction

- Objective function of maximizing expected marginal revenue
- Optimize similarly
 - Unit allocation with priority to marginal revenue
 - Allocate until 1) quantity is exhausted or 2) no non-negative marginal revenue

Some remains...

What if marginal revenues are not downward sloping?

Some remains...

When buyers' and the seller's valuation are private

Thank you

Thank you for listening. Tell me if you have any questions