Algorithmic Pricing via Virtual Valuations

Shuchi C., Jason D. H., Robert D. K.

August, 2008

yonsei-cs-theory-students

Algorithmic Pricing

Given:

- List of Prices for all possible allocations to a consumer
- Consumer's preference indicates a most desired allocation
 Goal:
- Take an instance given by a class of allowable pricings and a set of consumers, and compute the pricing maximizing(or approximately maximizing) a specific objective

Algorithmic Pricing

Problem 1: Bayesian Single-item Auction Problem (BSAP)
 Single item for sale,

≻N consumers,

 \succ Distribution F from which consumer valuations are drawn

Goal: design seller optimal auction for F

Algorithmic Pricing

- Problem 2: Bayesian Unit-demand Pricing Problem (BUPP)
 Single unit-demand consumer,
 - \succ N items for sale,
 - Distribution F from which the consumer's valuations for each item are drawn
 - Goal: compute seller optimal item-pricing for F

Notations

- Valuation vector v = (v₁,..., v_n)
 >BSAP v_i: valuation of consumer i for the single item
 >BUPP v_i: valuation of single consumer for item i
 v_i drawn independently from distribution F_i over range [l_i, h_i]
- \mathbb{V}_{-i} : all valuations except the ith
- $\mathbb{F} = F_1 \times \cdots \times F_n$
- $f_i(v_i)$: probability density of v_i

Definitions

• Monotone Hazard Rate

Given a distribution F with density f, the hazard rate of F: $\frac{f(v)}{1 - F(v)}$

is monotonically non-decreasing function of v.

Definitions

Regularity

Given a distribution F with density f is regular if $v - \frac{1 - F(v)}{f(v)}$

is monotonically non-decreasing for all v.

When each F_i is regular, then \mathbb{F} is regular.

- single item for sale
- \bullet n-consumers with values given by \mathbbm{V}
- v_i from a distribution F_i
- revenue $\mathcal{R}^{\mathcal{A}}$

• Virtual valuations

Virtual valuation of bidder *i* with valuation v_i drawn from F_i is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}.$

The virtual surplus of a BSAP is the virtual valuation of the winner.

BSAP

• Myerson's Theorem

Any incentive-compatible auction ${\mathcal A}$ has expected revenue equal to its expected virtual surplus

>Maximizing revenue = Maximizing virtual surplus

Set the price as take-it-or-leave-it price $p_i = \phi_i^{-1}(v_i)$ where $v_i = \max_{\substack{j \neq i}} \max(\phi_j(v_j), 0)$.

 $\succ \mathcal{R}^{\mathcal{M}}$: the revenue of Myerson's auction.

BSAP

- $\mathcal{R}^{\mathcal{A}}$: revenue of BSAP
- v: reservation value of item
- When \mathbb{F} is regular, $\mathcal{R}^{\mathcal{M}_{v}} + v \cdot \mathcal{X}(\mathcal{M}_{v}) \geq \mathcal{R}^{\mathcal{A}} + v \cdot \mathcal{X}(\mathcal{A})$ for all incentive-compatible auctions \mathcal{A} .

Fact: Virtual valuations satisfy $\phi_i(v_i) \le v_i$ $\mathcal{X}(\mathcal{A})$ is the probability of item not sold

BUPP

- n-item for sale
- single consumer with unit-demand
- quasi-linear preferences given by vector \mathbb{V} . $u(v_1, \dots, v_n) = v_1 + \theta(v_2, \dots, v_n)$
- v_i from a distribution F_i
- p: price vector
- revenue $\mathcal{R}^{\mathbb{P}}$

$$\mathcal{R}^{\mathbb{P}} = \sum_{i} p_{i} \cdot \Pr_{v \sim F} \left[(v_{i} - p_{i}) = \max_{j < n} (v_{j} - p_{j}) \right]$$

BSAP and **BUPP**

- When n=1 BSAP and BUPP are equal and the revenue is $p_1 = \phi_i^{-1}(0)$
- For n > 1, the optimal auction $\mathcal{R}^{\mathcal{M}}$ for BSAP will obtain at least the revenue $\mathcal{R}^{\mathbb{P}}$ for any pricing \mathbb{p} for BUPP

$$\mathcal{R}^{\mathcal{M}} \geq \mathcal{R}^{\mathbb{P}}$$

BSAP and **BUPP**

For a pricing \mathbb{P} consider mechanism $\mathcal{A}_{\mathbb{P}}$:

- >Allocate item to bidder *i* that maximizes $v_i p_i$, with standard threshold payment
- $\succ \mathsf{Because}$ of monotone allocation $\mathcal{A}_{\mathbb{P}}$ is truthful

$$\mathcal{R}^{\mathcal{A}_{\mathbb{P}}} \leq \mathcal{R}^{\mathcal{M}}$$

BSAP and **BUPP**

Given a valuation vector \mathbbm{v} and suppose that $\mathcal{A}_{\mathbb{P}}$ allocates the item to bidder i

≻Minimum bid of the item is

$$p_i + \max(v_j - p_j, 0)$$

Frevenue of $\mathcal{A}_{\mathbb{P}}$ with \mathbb{V} is at least p_i

Frevenue of pricing \mathbb{P} is exactly p_i $\mathcal{R}^{\mathcal{A}_{\mathbb{P}}} \geq \mathcal{R}^{\mathbb{P}}$

$$\mathcal{R}^{\mathcal{M}} \geq \mathcal{R}^{\mathcal{A}_{\mathbb{P}}} \geq \mathcal{R}^{\mathbb{P}}$$

• Given
$$v = \max(0, v_{1/2})$$
, the pricing $\mathbb{P} = \mathbb{r}(v)$
 $\mathcal{R}^{\mathbb{P}} \ge \mathcal{R}^{\mathcal{M}}/3$.

$$v_{x}: \mathcal{X}\big(\mathbb{r}(v_{x})\big) = x$$

• Corollary 6

$$\mathcal{R}^{\mathcal{M}_{\mathcal{V}}} + \mathcal{V} \cdot \mathcal{X}(\mathcal{M}_{\mathcal{V}}) \geq \mathcal{R}^{\mathcal{M}}$$

$$\mathcal{R}^{\mathcal{M}_{\mathcal{V}}} + \boldsymbol{\upsilon} \cdot \boldsymbol{\mathcal{X}}(\mathcal{M}_{\boldsymbol{\upsilon}}) \geq \mathcal{R}^{\mathcal{A}} + \boldsymbol{\upsilon} \cdot \boldsymbol{\mathcal{X}}(\mathcal{A}) \Rightarrow \\ \mathcal{R}^{\mathcal{M}_{\mathcal{V}}} + \boldsymbol{\upsilon} \cdot \boldsymbol{\mathcal{X}}(\mathcal{M}_{\boldsymbol{\upsilon}}) \geq \mathcal{R}^{\mathcal{M}} \text{ (give } \mathcal{A} = \mathcal{M} \text{ and } \boldsymbol{\mathcal{X}}(\mathcal{A}) \geq 0 \text{)}$$

• Lemma 7

For
$$\mathbb{p} = \mathbb{r}(\mathcal{V}), \mathcal{R}^{\mathbb{p}} \ge (1 - \mathcal{X}(\mathbb{p})) \cdot \mathcal{V}$$

Remark that $1 - \mathcal{X}(p)$ is the probability of item being sold

• Lemma 8

For any
$$\mathbb{p}, \mathcal{R}^{\mathbb{p}} \geq \mathcal{X}(\mathbb{p}) \cdot \sum_{i} p_{i}q_{i}$$

$$q_i = 1 - F_i(p_i)$$

• Lemma 9

Under regularity, for any $\mathbb{P} \ge \mathbb{r}(0)$ and any incentive – compatible auction \mathcal{A} we have $\mathcal{R}_{\mathbb{P}}^{\mathcal{A}} \le \sum_{i} p_{i}q_{i}$

• Lemma 9

Under regularity, for any $\mathbb{P} \geq \mathbb{r}(0)$ and any incentive – compatible auction \mathcal{A} we have $\mathcal{R}_{\mathbb{P}}^{\mathcal{A}} \leq \sum_{i} p_{i}q_{i}$ Let mechanism \mathcal{A}' sell if and only if $v_i \ge p_i$. Then $\mathcal{R}_{\mathbb{D}}^{\mathcal{A}'} = \mathcal{R}^{\mathcal{A}'}$ and $\mathcal{R}_{\mathbb{D}}^{\mathcal{A}} \leq \mathcal{R}_{\mathbb{D}}^{\mathcal{A}'}$. Since $\mathcal{R}^{\mathcal{A}'}$ revenue is less than the optimal auction $\sum_i p_i q_i$, the lemma holds.

Corollary 10

Under regularity, any auction \mathcal{A} and any pricing $\mathbb{P} \geq \mathbb{r}(0)$ satisfies $\mathcal{X}(\mathbb{P}) \cdot \mathcal{R}_{\mathbb{P}}^{\mathcal{A}} \leq \mathcal{R}^{\mathbb{P}}$

• Corollary 11

Under regularity, for any $v \ge 0$, $\mathbb{p} = \mathbb{r}(v)$ satisfies $\mathcal{X}(\mathbb{p}) \cdot \mathcal{R}^{\mathcal{M}_{v}} \le 3\mathcal{R}^{\mathbb{p}}$

• Lemma 12

Under regularity, with $v_{1/2} \ge 0$, for any $v \ge 0$, $\mathbb{P} = \mathbb{r}(v_{1/2})$ satisfies $\mathcal{X}(\mathbb{P}) \cdot \mathcal{R}^{\mathcal{M}_v} \le \mathcal{R}^{\mathbb{P}}$

$$\mathcal{R}^{\mathcal{M}} \leq \mathcal{R}^{\mathcal{M}_{v_{\mathcal{X}}}} + v_{\mathcal{X}} x \leq \frac{1}{x} \mathcal{R}^{\mathbb{P}} + v_{\mathcal{X}} x \leq \frac{1}{x} \mathcal{R}^{\mathbb{P}} + \frac{x}{1-x} \mathcal{R}^{\mathbb{P}} = 3\mathcal{R}^{\mathbb{P}}$$

 $\Rightarrow \mathcal{R}^{\mathbb{P}} \geq \mathcal{R}^{\mathcal{M}}/3$

