Algorithmic Pricing via Virtual Valuations

Shuchi C., Jason D. H., Robert D. K.

August, 2008

Algorithmic Pricing

Given:

- List of Prices for all possible allocations to a consumer
- Consumer's preference indicates a most desired allocation Goal:
- Take an instance given by a class of allowable pricings and a set of consumers, and compute the pricing maximizing(or approximately maximizing) a specific objective

Algorithmic Pricing

• Problem 1: Bayesian Single-item Auction Problem (BSAP) Single item for sale,

 \triangleright N consumers,

 \triangleright Distribution F from which consumer valuations are drawn

Goal: design seller optimal auction for F

Algorithmic Pricing

• Problem 2: Bayesian Unit-demand Pricing Problem (BUPP) Single unit-demand consumer,

 \triangleright N items for sale,

 \triangleright Distribution F from which the consumer's valuations for each item are drawn

Goal: compute seller optimal item-pricing for F

Notations

- Valuation vector $v = (v_1, ..., v_n)$ \triangleright BSAP v_i : valuation of consumer *i* for the single item \triangleright BUPP v_i : valuation of single consumer for item i v_i drawn independently from distribution F_i over range $\{l_i, h_i\}$
- V_{-i} : all valuations except the ith
- $\mathbb{F} = F_1 \times \cdots \times F_n$
- $f_i(v_i)$: probability density of v_i

• Monotone Hazard Rate

Given a distribution F with density f, the *hazard rate* of F : $f(v)$ $1-F(v)$

is monotonically non-decreasing function of v .

Definitions

• Regularity

Given a distribution F with density f is regular if $v - \frac{1 - F(v)}{F(v)}$ $f(v)$

is monotonically non-decreasing for all ν .

When each F_i is regular, then $\mathbb F$ is regular.

- single item for sale
- \bullet n-consumers with values given by $\mathbb {v}$
- v_i from a distribution F_i
- revenue $\mathcal{R}^{\mathcal{A}}$

• Virtual valuations

Virtual valuation of bidder i with valuation v_i drawn from F_i is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}.$

The virtual surplus of a BSAP is the virtual valuation of the winner.

BSAP

• Myerson's Theorem

Any incentive-compatible auction A has expected revenue equal to its expected virtual surplus

 \triangleright Maximizing revenue = Maximizing virtual surplus

\triangleright Set the price as take-it-or-leave-it price $p_i = \phi_i^{-1}(v_i)$ where $v_i = \max_{i \neq i}$ $j\neq l$ $\max(\phi_j(\nu_j),0)$.

 $\triangleright \mathcal{R}^{\mathcal{M}}$: the revenue of Myerson's auction.

BSAP

- $\mathcal{R}^{\mathcal{A}}$: revenue of BSAP
- v : reservation value of item
- When F is regular, $\mathcal{R}^{\mathcal{M}_{v}} + v \cdot \mathcal{X}(\mathcal{M}_{v}) \geq \mathcal{R}^{\mathcal{A}} + v \cdot \mathcal{X}(\mathcal{A})$ for all incentive-compatible auctions A .

Fact: Virtual valuations satisfy $\phi_i(v_i) \leq v_i$ $\mathcal{X}(\mathcal{A})$ is the probability of item not sold

BUPP

- n-item for sale
- single consumer with unit-demand
- quasi-linear preferences given by vector ∇ . $u(v_1, ..., v_n) = v_1 + \theta(v_2, ..., v_n)$
- v_i from a distribution F_i
- p: price vector
- revenue $\mathcal{R}^{\mathbb{P}}$

$$
\mathcal{R}^{\mathbb{P}} = \sum_{i} p_i \cdot \Pr_{v \sim F} \left[(v_i - p_i) = \max_{j < n} (v_j - p_j) \right]
$$

BSAP and BUPP

- When $n = 1$ BSAP and BUPP are equal and the revenue is $p_1 = \phi_i^{-1}(0)$
- For $n > 1$, the optimal auction $\mathbb{R}^{\mathcal{M}}$ for BSAP will obtain at least the revenue $\mathcal{R}^{\mathbb{P}}$ for any pricing \mathbb{P} for BUPP

$$
\mathcal{R}^{\mathcal{M}} \geq \mathcal{R}^{\mathbb{P}}
$$

BSAP and BUPP

For a pricing $\mathbb p$ consider mechanism $\mathcal A_{\mathbb p}$:

- >Allocate item to bidder *i* that maximizes $v_i p_i$, with standard threshold payment
- \triangleright Because of monotone allocation $\mathcal{A}_{\mathfrak{p}}$ is truthful

$$
\mathcal{R}^{\mathcal{A}_{\mathbb{P}}}\leq \mathcal{R}^{\mathcal{M}}
$$

BSAP and BUPP

Given a valuation vector \texttt{w} and suppose that $\mathcal{A}_{\texttt{p}}$ allocates the item to bidder i

Minimum bid of the item is

$$
p_i + \max(v_j - p_j, 0)
$$

$$
\triangleright
$$
 revenue of $\mathcal{A}_{\mathbb{P}}$ with \mathbb{V} is at least p_i

 \triangleright revenue of pricing p_i is exactly p_i $\mathcal{R}^{\mathcal{A}_{\mathbb{P}}} \geq \mathcal{R}^{\mathbb{P}}$

$$
\boldsymbol{\mathcal{R}^{\mathcal{M}}} \geq \boldsymbol{\mathcal{R}}^{\mathcal{A}_p} \geq \boldsymbol{\mathcal{R}}^p
$$

• Given
$$
v = \max(0, v_{1/2})
$$
, the pricing $p = r(v)$. $\mathcal{R}^p \geq \mathcal{R}^M / 3$.

$$
\mathcal{V}_x\colon \mathcal{X}\big(\mathrm{tr}(\mathcal{V}_x)\big)=x
$$

• Corollary 6

$$
\mathcal{R}^{\mathcal{M}_{v}} + v \cdot \mathcal{X}(\mathcal{M}_{v}) \geq \mathcal{R}^{\mathcal{M}}
$$

$$
\mathcal{R}^{\mathcal{M}_v} + v \cdot \mathcal{X}(\mathcal{M}_v) \geq \mathcal{R}^{\mathcal{A}} + v \cdot \mathcal{X}(\mathcal{A}) \Rightarrow
$$

$$
\mathcal{R}^{\mathcal{M}_v} + v \cdot \mathcal{X}(\mathcal{M}_v) \geq \mathcal{R}^{\mathcal{M}} \text{ (give } \mathcal{A} = \mathcal{M} \text{ and } \mathcal{X}(A) \geq 0)
$$

• Lemma 7

For
$$
\mathbf{p} = \mathbf{r}(v), \mathcal{R}^{\mathbf{p}} \geq (1 - \mathcal{X}(\mathbf{p})) \cdot v
$$

Remark that $1 - \mathcal{X}(\mathbb{p})$ is the probability of item being sold

• Lemma 8

For any
$$
\mathbb{p}, \mathcal{R}^{\mathbb{p}} \geq \mathcal{X}(\mathbb{p}) \cdot \sum_{i} p_i q_i
$$

$$
q_i = 1 - F_i(p_i)
$$

• Lemma 9

Under regularity, for any $p \ge r(0)$ and any incentive – compatible auction $\mathcal A$ we have $\mathcal{R}_{\mathbb{P}}^{\mathcal{A}} \leq$ $\Bigg\}$ ι $p_i q_i$

• Lemma 9

Under regularity, for any $p \geq r(0)$ and any incentive – compatible auction $\mathcal A$ we have $\mathcal{R}_{\mathbb{P}}^{\mathcal{A}} \leq$ $\Bigg\}$ ι $p_i q_i$ Let mechanism \mathcal{A}' sell if and only if $v_i \ge p_i$. Then ${\mathcal{R}_{\mathbb{P}}^{\mathcal{A}}}^{\prime} = \mathcal{R}^{\mathcal{A}^{\prime}}$ and $\mathcal{R}_{\mathbb{P}}^{\mathcal{A}} \leq \mathcal{R}_{\mathbb{P}}^{\mathcal{A}^{\prime}}.$ Since $\mathcal{R}^{\mathcal{A}'}$ revenue is less than the optimal auction $\sum_i p_i q_i,$ the

lemma holds.

• Corollary 10

Under regularity, any auction A and any pricing $p \geq r(0)$ satisfies $\mathcal{X}(\mathbb{p})\cdot \mathcal{R}^{\mathcal{A}}_{\mathbb{p}}\leq \mathcal{R}^{\mathbb{p}}$

• Corollary 11

Under regularity, for any $v \ge 0$, $p = r(v)$ satisfies $\mathcal{X}(p) \cdot \mathcal{R}^{\mathcal{M}_v} \le 3\mathcal{R}^p$

• Lemma 12

Under regularity, with $v_{1/2} \geq 0$, for any $v \ge 0$, $p = r(v_{1/2})$ satisfies $\mathcal{X}(p) \cdot \mathcal{R}^{\mathcal{M}_v} \le \mathcal{R}^p$

$$
\mathcal{R}^{\mathcal{M}} \leq \mathcal{R}^{\mathcal{M}_{v_{\mathcal{X}}} + \nu_{\mathcal{X}}\mathcal{X}} \leq \frac{1}{\mathcal{X}}\mathcal{R}^{\mathbb{P}} + \nu_{\mathcal{X}}\mathcal{X} \leq \frac{1}{\mathcal{X}}\mathcal{R}^{\mathbb{P}} + \frac{\mathcal{X}}{1 - \mathcal{X}}\mathcal{R}^{\mathbb{P}} = 3\mathcal{R}^{\mathbb{P}}
$$

 \Rightarrow $\mathcal{R}^{\mathbb{P}} \geq \mathcal{R}^{\mathcal{M}}/3$

