Multi-parameter Mechanism Design and Sequential Posted Pricing

Shuich Chawla Jason D. Hartline David L. Malec Balasubramanian Sivan

May 1, 2023; Week $#9$

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-52-0) May 1, 2023 1/45

[Overview](#page-1-0)

Overview

[Introduction](#page-2-0)

[Prelim.](#page-11-0)

[Reducing parameters](#page-27-0)

[Approximation of Optimal Mechanism on BSMD](#page-31-0)

[Approximation of Optimal Mechanism on BMUMD](#page-44-0)

[How to find a near-optimal price sequence](#page-48-0)

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 2/45

Overview

[Introduction](#page-2-0)

[Prelim.](#page-11-0)

[Reducing parameters](#page-27-0)

[Approximation of Optimal Mechanism on BSMD](#page-31-0)

[Approximation of Optimal Mechanism on BMUMD](#page-44-0)

[How to find a near-optimal price sequence](#page-48-0)

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 3/45

What is our problem?

Suppose that you need to reserve hotel rooms for the attendees of a conference. There are a number of rooms available with different features and attendees have preferences over the rooms. Given distributional knowledge on the preferences, How you can maximize your revenue?

Problem Design

1. n attendees

2. m attendee-room matchings

 \blacktriangleright $J = [m]$; $\Pi = (J_1, \ldots, J_n)$ is a partition of J

- 3. Each attendee i has preference $v_i \sim F_i$ with density f_i for $j \in J_i$
- 4. Feasibility constraint $\mathcal{J} \subseteq 2^J$
	-
	-
- hotel rooms for the attendees of a conference

Problem Design

- 1. n attendees
- 2. m attendee-room matchings

 \blacktriangleright $J = [m]$; $\Pi = (J_1, \ldots, J_n)$ is a partition of J

- 3. Each attendee i has preference $v_i \sim F_i$ with density f_i for $j \in J_i$
- 4. Feasibility constraint $\mathcal{J} \subseteq 2^J$
	-
	-
- ... a number of rooms available ...

- 1. n attendees
- 2. m attendee-room matchings
	- \blacktriangleright $J = [m]$; $\Pi = (J_1, \ldots, J_n)$ is a partition of J
- 3. Each attendee i has preference $v_i \sim F_i$ with density f_i for $j \in J_i$
- 4. Feasibility constraint $\mathcal{J} \subseteq 2^J$
	-

... have preferences over the rooms. Given distributional knowledge on the preferences...

- 1. n attendees
- 2. m attendee-room matchings

 \blacktriangleright $J = [m]$; $\Pi = (J_1, \ldots, J_n)$ is a partition of J

- 3. Each attendee i has preference $v_i \sim F_i$ with density f_i for $j \in J_i$
- 4. Feasibility constraint $\mathcal{J} \subseteq 2^J$
	- ▶ Downward closed: $A \subsetneq B \in 2^J$ and $B \in \mathcal{J}$ implies $A \in \mathcal{J}$. ▶ Unit-demand: $i \in [n]$, $S \in \mathcal{J}$, $|S \cap J_i| \leq 1$.

You should not allocate a single room to several attendees.

- 1. n attendees
- 2. m attendee-room matchings

 \blacktriangleright $J = [m]$; $\Pi = (J_1, \ldots, J_n)$ is a partition of J

- 3. Each attendee *i* has preference $v_i \sim F_i$ with density f_i for $j \in J_i$
- 4. Feasibility constraint $\mathcal{J} \subseteq 2^J$
	- ▶ Downward closed: $A \subsetneq B \in 2^J$ and $B \in \mathcal{J}$ implies $A \in \mathcal{J}$.
	- ▶ Unit-demand: $i \in [n]$, $S \in \mathcal{J}$, $|S \cap J_i| \leq 1$.

An attendee needs at most a single room

- 1. n attendees
- 2. m attendee-room matchings

 \blacktriangleright $J = [m]$; $\Pi = (J_1, \ldots, J_n)$ is a partition of J

- 3. Each attendee *i* has preference $v_i \sim F_i$ with density f_i for $j \in J_i$
- 4. Feasibility constraint $\mathcal{J} \subseteq 2^J$
	- ▶ Downward closed: $A \subsetneq B \in 2^J$ and $B \in \mathcal{J}$ implies $A \in \mathcal{J}$.
	- ▶ Unit-demand: $i \in [n]$, $S \in \mathcal{J}$, $|S \cap J_i| \leq 1$.

If an allocation B is feasible, then its sub-allocation $A \subseteq B$ should be feasible

- 1. *n* attendees
- 2. m attendee-room matchings

 \blacktriangleright $J = [m]$; $\Pi = (J_1, \ldots, J_n)$ is a partition of J

- 3. Each attendee i has preference $v_i \sim F_i$ with density f_i for $j \in J_i$
- 4. Feasibility constraint $\mathcal{J} \subseteq 2^J$
	- ▶ Downward closed: $A \subsetneq B \in 2^J$ and $B \in \mathcal{J}$ implies $A \in \mathcal{J}$.
	- ▶ Unit-demand: $i \in [n]$, $S \in \mathcal{J}$, $|S \cap J_i| \leq 1$.

You need to design a mechanism M that maps preferences **v** to an allocation $M(v) \in \mathcal{J}$ and a pricing $\pi(v)$ that maximizes your revenue. [Prelim.](#page-11-0)

Overview

[Introduction](#page-2-0)

[Prelim.](#page-11-0)

[Bayesian Mechanism Design](#page-12-0) **[Matroids](#page-15-0)** [Sequential Posted-price Mechanism](#page-18-0) [Myerson's Auction](#page-24-0)

[Reducing parameters](#page-27-0)

[Approximation of Optimal Mechanism on BSMD](#page-31-0)

[Approximation of Optimal Mechanism on BMUMD](#page-44-0)

[How to find a near-optimal price sequence](#page-48-0) [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 6/45

Bayesian Mechanism Design

Multi-parameter, Unit-demand

Given

- 1. n multi-parameter agents
- 2. a single seller providing m services

 \blacktriangleright $J = [m]$; $\Pi = (J_1, \ldots, J_n)$ is a partition of J.

- 3. Each agent i has value $v_i \sim F_i$ with density f_i for $j \in J_i$
- 4. Feasibility constraint $\mathcal{J} \subseteq 2^J$
	- ▶ Downward closed: $A \subsetneq B \in 2^J$ and $B \in \mathcal{J}$ implies $A \in \mathcal{J}$.
	- ▶ Unit-demand: $i \in [n]$, $S \in \mathcal{J}$, $|S \cap J_i| \leq 1$.

The Bayesian multi-parameter unit-demand mechanism design (BMUMD) problem is to design a mechanism M maps bids v to an allocation $M(\mathbf{v}) \in \mathcal{J}$ and a pricing $\pi(\mathbf{v})$.

Bayesian Mechanism Design

Single-parameter

Given

- 1. n single-parameter agents,
- 2. a single seller providing a service,
- 3. Each agent i has value $v_i \sim F_i$ with density f_i and
- 4. Feasibility constraint $\mathcal{J} \subseteq 2^{[n]}$,

▶ Downward closed: $A \subsetneq B \in 2^{[n]}$ and $B \in \mathcal{J}$ implies $A \in \mathcal{J}$.

The Bayesian single-parameter mechanism design (BSMD) problem is to design a mechanism M that maps bids v to an allocation $M(v) \in \mathcal{J}$ and a pricing $\pi(\mathbf{v})$.

[Prelim.](#page-11-0) [Bayesian Mechanism Design](#page-12-0)

Note

BSMD is a special case of BMUMD, where $n = m$ and $J_i = \{i\}$ for all $i \in [n]$.

Matroids

Definition

A set system $\mathcal{M} = (X, \mathcal{S})$ over X is a matroid if it satisfies the following conditions.

- 1. $\emptyset \in \mathcal{S}$.
- 2. (Downward-closed) If $A \in S$ and $B \subseteq A$, then $B \in S$ and
- 3. (augmentation) If $A, B \in \mathcal{S}$ with $|A| > |B|$, then there exists $e \in A \setminus B$ such that $B \cup \{e\} \in S$.

Matroids Properties

For
$$
S \subseteq X
$$
 and $\mathcal{M} = (X, \mathcal{S})$,

- ▶ Rank $r(S) = \max_{A \subseteq S, A \in S} |A|$ (the cardinality of max. indep. set in S)
- ▶ Span span(S) = $\{x \in X \mid r(S + x) = r(S)\}$ $\supseteq S$ (the max. superset T having the same rank)

Special Matroids

A matroid $\mathcal{M} = (X, \mathcal{S})$ is...

- ▶ k-Uniform matroid if $S = \{S \in 2^X \mid |S| \le k\}.$
- ▶ Partition matroid if it is a direct sum of uniform matroids
	- \blacktriangleright X partitioned into n sets X_1, \ldots, X_n .
	- ▶ $|X_i \cap S| \leq k_i$ for some k_i .

Mechanism S

This is a mechanism S for sequential posted pricing: **Require:** ordering $\sigma : [m] \to [m]$ over services and prices $\mathbf{p} = \{p_i\}$. $A \leftarrow \emptyset$ for $j \in [m]$ do if $A \cup \{\sigma(j)\}\in \mathcal{J}$ then Offer p_i for $\sigma(j)$; If accepted, $A \leftarrow A \cup {\sigma(j)}$ end if end for Serve A Note that p_i is the offering price for *j*th service; not the service *j*. Let $\mathcal{R}^{(\mathbf{p},\sigma)}(\mathbf{v})$ be the expected revenue of this mechanism $\mathcal S$ on valuation

profile v.

Sequential Posted-price Mechanism

A sequential posted-price mechanism (SPM) has an expected revenue of

$$
\mathcal{R}^{(\mathbf{p},\sigma)} = \mathrm{E}_{\mathbf{v}\sim\mathbf{F}}[\mathcal{R}^{(\mathbf{p},\sigma)}(\mathbf{v})] = \sum_j c_j p_j q_j,
$$

where c_i is the probability with which the mechanism offers to $\sigma(j)$ (at price p_i) and $q_j = 1 - F_j(p_j) = Pr[v_j \geq p_j]$. We need to maximize $\mathcal{R}^{(\mathbf{p},\sigma)}$ by choosing **p** and σ .

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 14/45

Given two attendees 1 and 2 and a single room; their values are i.i.d. uniformly between \$100 and \$200.

- ▶ The optimal mechanism (Vickery/Myerson) has an expected revenue of \$133 (E[min $\{v_1, v_2\}$]).
- \blacktriangleright The optimal SPM is to offer 1 at \$150, and 2 at \$100; its expected revenue is \$125.

Obviously, $133 > 125$. Why should we use SPM?

Why do we use SPM?

SPM is easily extensible to multi-parameter settings.

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 16/45

Caveats

- \triangleright S requires two parameters: ordering σ and prices **p**.
- \triangleright As a seller, we choose **p** to offer.
- \triangleright What if we cannot choose σ on our own?

Order-oblivious pricing

An order-oblivious posted-pricing mechanism (OPM) has an expected (worst) revenue of

$$
\mathcal{R}^{\mathbf{p}} = \mathrm{E}_{\mathbf{v} \sim \mathbf{F}}[\min_{\sigma} \mathcal{R}^{(\mathbf{p}, \sigma)}(\mathbf{v})].
$$

Myerson's Auction

Regularity

Definition

A value distribution F is regular if the revenue function $R(q) = F^{-1}(1-q) \cdot q = v \cdot (1-F(v))$ is concave. Equivalently, $\phi(v) = \frac{dR}{dq}$ is monotone non-decreasing.

This talk will only consider regular distributions.

Myerson's Auction Mechanism M

Require: Agents' valuation **v**; $\phi_j(v_j) = v_j - \frac{1-F_j(v_j)}{f_j(v_j)}$ $f_j(v_j)$ Choose $A \in \mathcal{J}$ that maximizes $\sum_{j \in A} \phi_j(v_j).$ Serve A

 $\mathcal{R}^M = \mathrm{E}_{\mathbf{v} \sim \mathbf{F}}[\sum_{j \in A} \phi_j(v_j)]$ is the expected revenue of Myerson's auction.

[Prelim.](#page-11-0) [Myerson's Auction](#page-24-0)

Myerson's Auction **Optimality**

Proposition

For any incentive-compatible mechanism A with its expected revenue \mathcal{R}^A , $\mathcal{R}^M > \mathcal{R}^A$.

[Reducing parameters](#page-27-0)

Overview

[Introduction](#page-2-0)

[Prelim.](#page-11-0)

[Reducing parameters](#page-27-0)

[Approximation of Optimal Mechanism on BSMD](#page-31-0)

[Approximation of Optimal Mechanism on BMUMD](#page-44-0)

[How to find a near-optimal price sequence](#page-48-0)

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 22/45

Reducing BMUMD to BSMD

Given a BMUMD instance $I = (J = [m], \mathcal{J}, \Pi, \mathbf{F})$, construct a BSMD instance I' by replacing i into $|J_i|$ distinct representatives $j \in J_i$ with value distribution F_j for $j\in J_i.$ Each representative j is interested in $j.$ [Reducing parameters](#page-27-0)

Reducing BMUMD to BSMD

Lower bound property

Since I' involves more competition than I , the following holds.

Lemma

Let A be any IR and IC deterministic mechanism for I. Then, its expected revenue $\mathcal{R}^\mathcal{A}_I$ is no more than the expected revenue $\mathcal{R}^M_{I'}$ of Myerson's auction for I'.

Reducing BMUMD to BSMD Reduction for OPM

Theorem

If an OPM with prices **p** is an α -approximation to the optimal mechanism for BSMD I', then it is an α -approximation to the optimal mechanism for BMUMD I.

Proof.

An ordering σ is good if $v_{\sigma(a)}-p_a\ge v_{\sigma(b)}-p_b$ for all $a < b, \, a,b \in J_i.$ I.e., an agent i should always take the first offer to maximize his surplus. Fix a good ordering σ on I. Then,

$$
\mathcal{R}_I^{(\mathbf{p},\sigma)}(\mathbf{v}) = \mathcal{R}_{I'}^{(\mathbf{p},\sigma)}(\mathbf{v}) \geq \mathcal{R}_{I'}^{\mathbf{p}}(\mathbf{v})
$$

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 25 / 45

Overview

[Introduction](#page-2-0)

[Prelim.](#page-11-0)

[Reducing parameters](#page-27-0)

[Approximation of Optimal Mechanism on BSMD](#page-31-0) [Approximation through SPMs](#page-34-0) [Approximation through OPMs](#page-37-0)

[Approximation of Optimal Mechanism on BMUMD](#page-44-0)

[How to find a near-optimal price sequence](#page-48-0)

Chawla et al. **Multi-parameter MD** and Posted Pricing May 1, 2023 26/45

Summary

Summary

2-approx. for general matroids Proof (1)

Theorem

For a BSMD instance I, there exist prices p and ordering σ such that $\mathcal{R}^{(p,\sigma)} = \mathcal{S}$ 2-approx. \mathcal{R}^M for I.

Proof.

Note that, without the feasibility constraints, we can archive revenue of $\sum_i p_i q_i.$ Let $S=\{i_1 < i_2 < \cdots < i_l\}$ be the set of agents served and $S_i = \{i_1 < \ldots < i_j\}$. Let $B_i = \text{span}(S_i) \setminus \text{span}(S_{i-1}) \subseteq \{i \mid i \geq i_j\}$, then B_i is the set of agents blocked by i_{i+1} .

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 28/45

2-approx. for general matroids Proof (2)

Proof.

Then, the lost revenue given that S is served is:

$$
\sum_{1 \leq j \leq l} \sum_{i \in B_j} p_i q_i \leq p_1 \left(\sum_{i \in \text{span}(S_1)} q_i \right) + \sum_{1 < j \leq l} p_j \left(\sum_{i \in B_j} q_i \right)
$$
\n
$$
= \sum_{1 \leq j < l} \left((p_j - p_{j+1}) \sum_{i \in \text{span}(S_j)} q_i \right) + p_l \left(\sum_{i \in \text{span}(S_l)} q_i \right)
$$
\n
$$
\leq \sum_{1 \leq j < l} (p_j - p_{j+1}) \cdot j + p_l \cdot l \leq \sum_{1 \leq j < l} p_j.
$$

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 29/45

2-approx. for general matroids Proof (3)

Proof

Thus,

$$
\text{E}[\text{revenue lost}] = \sum_{S} \sum_{j \in S} p_j \cdot \Pr[S \text{ served}] = \mathcal{R}^{(\mathbf{p}, \sigma)}.
$$

which follows $\mathcal{R}^M \leq \sum_j p_j q_j \leq 2 \mathcal{R}^{(\boldsymbol{p}, \sigma)}$

 $O(\log k)$ -approx. for general matroids Proof (1)

Theorem

For a BSMD instance I, there exist prices p such that \mathcal{R}^p $O(\log k)$ -approx. \mathcal{R}^M for I, where $k = \max_{S \in \mathcal{J}} r(S)$ is the maximum rank of independent sets of the matroid.

Proof.

Note that the worst allocation is when agents arrive in the order of increasing prices; let σ be that order. Note that $\mathcal{R}^{(\boldsymbol{p},\sigma)}=\sum_{i}c_{i}p_{i}q_{i}\geq\frac{1}{2}$ $\frac{1}{2}\sum_i p_i q_i$.

$O(\log k)$ -approx. for general matroids Proof (2)

Proof.

Consider $\boldsymbol{p}=1;$ then $\sum_{i}c_{i}q_{i}\geq\frac{1}{2}$ $\frac{1}{2}\sum_i q_i.$ Then, we have

$$
\frac{1}{2}\sum_{i} q_i \le \sum_{i} c_i q_i \le \frac{1}{4}\sum_{i} q_i + \frac{3}{4}\sum_{i:c_i \ge 1/4} q_i,
$$

and thus,

$$
\sum_{i:c_i\geq 1/4} q_i \geq \frac{1}{3} \sum_i q_i.
$$

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 32/45

$O(\log k)$ -approx. for general matroids Proof (3)

Proof.

Then, Let $G=\{i\mid c_i\geq \frac{1}{4}$ $\frac{1}{4}\}$, the revenue by G is

$$
\sum_{i \in G} c_i p_i q_i \ge \frac{1}{4} \sum_{i \in G} p_i^M q_i^M.
$$

Note that $|G| \geq \frac{1}{3}n$.

$O(\log k)$ -approx. for general matroids Proof (4)

Proof

By setting $l = \lceil 1 + \log_{3/2} k \rceil$, we can partition $[n]$ into l sets with total revenue of at least $\mathcal{R}^{M}/4$. We can conclude that there exists a set whose revenue is at least $1/4l \cdot \mathcal{R}^M = \Omega(1/\log k) \cdot \mathcal{R}^M$.

6.75-approx. for intersection of partition matroids Proof (1)

Theorem

Let I be a BSMD instance with a feasibility constraints given by the intersection of two partition matroids. Then, there exists a set of prices p such that \mathcal{R}^p 6.75-approximates \mathcal{R}^M for I.

Proof.

Let $q_i = q_i^M/3$ and $p_i = F_i^{-1}(1-q_i)$. This mechanism serves agents in any arbitrary order (hence OPM), but offers a price p_i for agent i. We now prove that $c_i \geq 4/9 = 1/6.75$, then ${\cal R}^{\bm{p}} = \sum_i c_i p_i q_i \geq 4/9 \sum_i p_i^M q_i^M/3$.

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 35/45

6.75-approx. for intersection of partition matroids Proof (2)

Proof.

Let \mathcal{M}_1 and \mathcal{M}_2 be two partition matroids. for $j = 1, 2$, let agent i be in partition P_j of \mathcal{M}_j and $k_x=r_{\mathcal{M}_x}(P_x).$ Then, the expected number of agents in P_i desiring service is

$$
\sum_{i \in P_j} q_i \le k_j/3.
$$

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 36 / 45

6.75-approx. for intersection of partition matroids Proof (3)

Proof.

Let E_i be the event that at most $k_j - 1$ agents from P_j desire service. Then i is always considered when both E_1 and E_2 happen. Thus,

 $c_i > \Pr[E_1 \cap E_2] > 2/3 \cdot 2/3.$

Overview

[Introduction](#page-2-0)

[Prelim.](#page-11-0)

[Reducing parameters](#page-27-0)

[Approximation of Optimal Mechanism on BSMD](#page-31-0)

[Approximation of Optimal Mechanism on BMUMD](#page-44-0)

[How to find a near-optimal price sequence](#page-48-0)

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 38/45

Summary

Summary

Multi-unit, Multi-item, unit-demand

Theorem

Consider an instance of BMUMD where the seller has multiple copies of n items on sale, and agents are unit-demand. then, there exists an 6.75-approximate OPM for this instance.

Proof.

From Theorem 4 (α -approximation for BMUMD) and Theorem 13 (6.75-approx. for BSMD $w/$ two part. mat.).

Overview

[Introduction](#page-2-0)

[Prelim.](#page-11-0)

[Reducing parameters](#page-27-0)

[Approximation of Optimal Mechanism on BSMD](#page-31-0)

[Approximation of Optimal Mechanism on BMUMD](#page-44-0)

[How to find a near-optimal price sequence](#page-48-0)

Chawla et al. [Multi-parameter MD and Posted Pricing](#page-0-0) May 1, 2023 41/45

Assumptions

- An algorithm that computes the optimal price p_i to charge to a single-parameter agent given by $F_i.$ (Note that, with given $x,$ we can use this algorithm to find an optimal price in $[x,\infty)$.)
- An oracle that, given a value v, returns $F_i(v)$ and $f_i(v)$.
- An oracle that, given a probability α , returns $F_i^{-1}(\alpha)$.
- ▶ An algorithm to maximize social welfare over the given feasibility constraint (Myerson's).

Algorithm

- 1. Let $\epsilon=1/3n$. Sample $N=4n^4\log n/\epsilon^2$ value profiles from $\boldsymbol{F}.$
- 2. Estimate q_i^M using the samples; call q_i^M .
- 3. If $q_i^M < 1/n^2$, set $\widehat{q}_i = 1/n^2$. Else, set $\widehat{q}_i = q_i^M/(1-\epsilon)$.
- 4. Compute $\widehat{p_i} = F_i^{-1}(1 \widehat{q_i}).$
- 5. Find the optimal price p_i in $[\widehat{p_i}, \infty)$; let $q_i = 1 F_i(p_i)$.
- $6.$ Output p_i 's, and order of agents in decreasing prices.

Proof

Lemma

With prob. at least $1-\frac{2}{n}$ $\frac{2}{n}$, we have $\widehat{q}_i \in [q_i^M, (1 + 3\epsilon)q_i^M + 2/n^2]$.

Proof. $\Pr[|q_i^M - q_i^M| \ge \epsilon q_i^M] \le 2/n^2$ by Chernoff bounds. With $p_i^M \in [\widehat{p_i}, \infty)$, we have $p_i^M q_i^M \leq p_i q_i$.

Proof

Let $S = \{i \mid q^M_i < 1/n^2\}$. Then, the probability of a mechanism offer to anyone in S is at most $1/n$. Suppose not, then, by the prob. of $1 - 1/n$, our revenue from i is $p_i q_i > p_i^M q_i^M$. Thus, conditioned on the lemma (with probability of $1 - 2/n$), we get a $(1 - o(1))$ approx. to the optimal mechanism.