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Introduction

What is our problem?

Suppose that you need to reserve hotel rooms for the attendees of a
conference. There are a number of rooms available with different features
and attendees have preferences over the rooms. Given distributional
knowledge on the preferences, How you can maximize your revenue?
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Introduction

Problem Design

1. n attendees

2. m attendee-room matchings
▶ J = [m]; Π = (J1, . . . , Jn) is a partition of J

3. Each attendee i has preference vj ∼ Fj with density fj for j ∈ Ji

4. Feasibility constraint J ⊆ 2J

▶ Downward closed: A ⊊ B ∈ 2J and B ∈ J implies A ∈ J .
▶ Unit-demand: i ∈ [n], S ∈ J , |S ∩ Ji| ≤ 1.

... hotel rooms for the attendees of a conference....
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▶ J = [m]; Π = (J1, . . . , Jn) is a partition of J
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▶ Downward closed: A ⊊ B ∈ 2J and B ∈ J implies A ∈ J .
▶ Unit-demand: i ∈ [n], S ∈ J , |S ∩ Ji| ≤ 1.

... have preferences over the rooms. Given distributional knowledge on the
preferences...

Chawla et al. Multi-parameter MD and Posted Pricing May 1, 2023 5 / 45



Introduction

Problem Design

1. n attendees

2. m attendee-room matchings
▶ J = [m]; Π = (J1, . . . , Jn) is a partition of J

3. Each attendee i has preference vj ∼ Fj with density fj for j ∈ Ji

4. Feasibility constraint J ⊆ 2J

▶ Downward closed: A ⊊ B ∈ 2J and B ∈ J implies A ∈ J .
▶ Unit-demand: i ∈ [n], S ∈ J , |S ∩ Ji| ≤ 1.

You should not allocate a single room to several attendees.
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Introduction

Problem Design

1. n attendees

2. m attendee-room matchings
▶ J = [m]; Π = (J1, . . . , Jn) is a partition of J

3. Each attendee i has preference vj ∼ Fj with density fj for j ∈ Ji

4. Feasibility constraint J ⊆ 2J

▶ Downward closed: A ⊊ B ∈ 2J and B ∈ J implies A ∈ J .
▶ Unit-demand: i ∈ [n], S ∈ J , |S ∩ Ji| ≤ 1.

An attendee needs at most a single room
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Introduction

Problem Design

1. n attendees

2. m attendee-room matchings
▶ J = [m]; Π = (J1, . . . , Jn) is a partition of J

3. Each attendee i has preference vj ∼ Fj with density fj for j ∈ Ji

4. Feasibility constraint J ⊆ 2J

▶ Downward closed: A ⊊ B ∈ 2J and B ∈ J implies A ∈ J .
▶ Unit-demand: i ∈ [n], S ∈ J , |S ∩ Ji| ≤ 1.

If an allocation B is feasible, then its sub-allocation A ⊊ B should be
feasible
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Introduction

Problem Design

1. n attendees

2. m attendee-room matchings
▶ J = [m]; Π = (J1, . . . , Jn) is a partition of J

3. Each attendee i has preference vj ∼ Fj with density fj for j ∈ Ji

4. Feasibility constraint J ⊆ 2J

▶ Downward closed: A ⊊ B ∈ 2J and B ∈ J implies A ∈ J .
▶ Unit-demand: i ∈ [n], S ∈ J , |S ∩ Ji| ≤ 1.

You need to design a mechanism M that maps preferences v to an
allocation M(v) ∈ J and a pricing π(v) that maximizes your revenue.
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Prelim. Bayesian Mechanism Design

Bayesian Mechanism Design
Multi-parameter, Unit-demand

Given

1. n multi-parameter agents

2. a single seller providing m services
▶ J = [m]; Π = (J1, . . . , Jn) is a partition of J .

3. Each agent i has value vj ∼ Fj with density fj for j ∈ Ji

4. Feasibility constraint J ⊆ 2J

▶ Downward closed: A ⊊ B ∈ 2J and B ∈ J implies A ∈ J .
▶ Unit-demand: i ∈ [n], S ∈ J , |S ∩ Ji| ≤ 1.

The Bayesian multi-parameter unit-demand mechanism design (BMUMD)
problem is to design a mechanism M maps bids v to an
allocation M(v) ∈ J and a pricing π(v).

Chawla et al. Multi-parameter MD and Posted Pricing May 1, 2023 7 / 45



Prelim. Bayesian Mechanism Design

Bayesian Mechanism Design
Single-parameter

Given

1. n single-parameter agents,

2. a single seller providing a service,

3. Each agent i has value vi ∼ Fi with density fi and

4. Feasibility constraint J ⊆ 2[n],
▶ Downward closed: A ⊊ B ∈ 2[n] and B ∈ J implies A ∈ J .

The Bayesian single-parameter mechanism design (BSMD) problem is to
design a mechanism M that maps bids v to an allocation M(v) ∈ J and a
pricing π(v).
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Prelim. Bayesian Mechanism Design

Note

BSMD is a special case of BMUMD, where n = m and Ji = {i} for all
i ∈ [n].
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Prelim. Matroids

Matroids

Definition
A set systemM = (X,S) over X is a matroid if it satisfies the following
conditions.

1. ∅ ∈ S,
2. (Downward-closed) If A ∈ S and B ⊊ A, then B ∈ S and

3. (augmentation) If A,B ∈ S with |A| > |B|, then there exists
e ∈ A \B such that B ∪ {e} ∈ S.
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Prelim. Matroids

Matroids
Properties

For S ⊆ X andM = (X,S),
▶ Rank r(S) = maxA⊆S,A∈S |A|

(the cardinality of max. indep. set in S)

▶ Span span(S) = {x ∈ X | r(S + x) = r(S)} ⊇ S
(the max. superset T having the same rank)
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Prelim. Matroids

Special Matroids

A matroidM = (X,S) is...
▶ k-Uniform matroid if S = {S ∈ 2X | |S| ≤ k}.
▶ Partition matroid if it is a direct sum of uniform matroids

▶ X partitioned into n sets X1, . . . , Xn.
▶ |Xi ∩ S| ≤ ki for some ki.
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Prelim. Sequential Posted-price Mechanism

Sequential Posted-price Mechanism
Mechanism S

This is a mechanism S for sequential posted pricing:

Require: ordering σ : [m]→ [m] over services and prices p = {pj}.
A← ∅
for j ∈ [m] do

if A ∪ {σ(j)} ∈ J then
Offer pj for σ(j); If accepted, A← A ∪ {σ(j)}

end if
end for
Serve A

Note that pj is the offering price for jth service; not the service j.
Let R(p,σ)(v) be the expected revenue of this mechanism S on valuation
profile v.
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Prelim. Sequential Posted-price Mechanism

Sequential Posted-price Mechanism
Sequential Posted-price Mechanism

A sequential posted-price mechanism (SPM) has an expected revenue of

R(p,σ) = Ev∼F[R(p,σ)(v)] =
∑
j

cjpjqj ,

where cj is the probability with which the mechanism offers to σ(j) (at
price pj) and qj = 1− Fj(pj) = Pr[vj ≥ pj ].
We need to maximize R(p,σ) by choosing p and σ.
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Prelim. Sequential Posted-price Mechanism

Sequential Posted-price Mechanism
Example

Given two attendees 1 and 2 and a single room; their values are i.i.d.
uniformly between $100 and $200.
▶ The optimal mechanism (Vickery/Myerson) has an expected revenue

of $133 (E[min {v1, v2}]).
▶ The optimal SPM is to offer 1 at $150, and 2 at $100; its expected

revenue is $125.
Obviously, 133 > 125. Why should we use SPM?
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Prelim. Sequential Posted-price Mechanism

Sequential Posted-price Mechanism
Why do we use SPM?

SPM is easily extensible to multi-parameter settings.
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Prelim. Sequential Posted-price Mechanism

Sequential Posted-price Mechanism
Caveats

▶ S requires two parameters: ordering σ and prices p.

▶ As a seller, we choose p to offer.

▶ What if we cannot choose σ on our own?
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Prelim. Sequential Posted-price Mechanism

Sequential Posted-price Mechanism
Order-oblivious pricing

An order-oblivious posted-pricing mechanism (OPM) has an expected
(worst) revenue of

Rp = Ev∼F[min
σ
R(p,σ)(v)].
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Prelim. Myerson’s Auction

Myerson’s Auction
Regularity

Definition
A value distribution F is regular if the revenue
function R(q) = F−1(1− q) · q = v · (1− F (v)) is concave. Equivalently,
ϕ(v) = dR

dq is monotone non-decreasing.

This talk will only consider regular distributions.
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Prelim. Myerson’s Auction

Myerson’s Auction
Mechanism M

Require: Agents’ valuation v; ϕj(vj) = vj − 1−Fj(vj)
fj(vj)

Choose A ∈ J that maximizes
∑

j∈A ϕj(vj).
Serve A

RM = Ev∼F[
∑

j∈A ϕj(vj)] is the expected revenue of Myerson’s auction.
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Prelim. Myerson’s Auction

Myerson’s Auction
Optimality

Proposition

For any incentive-compatible mechanism A with its expected revenue RA,
RM ≥ RA.
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Reducing parameters

Reducing BMUMD to BSMD

Given a BMUMD instance I = (J = [m],J ,Π,F), construct a BSMD
instance I ′ by replacing i into |Ji| distinct representatives j ∈ Ji with
value distribution Fj for j ∈ Ji. Each representative j is interested in j.
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Reducing parameters

Reducing BMUMD to BSMD
Lower bound property

Since I ′ involves more competition than I, the following holds.

Lemma
Let A be any IR and IC deterministic mechanism for I. Then, its expected
revenue RA

I is no more than the expected revenue RM
I′ of Myerson’s

auction for I ′.
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Reducing parameters

Reducing BMUMD to BSMD
Reduction for OPM

Theorem
If an OPM with prices p is an α-approximation to the optimal mechanism
for BSMD I ′, then it is an α-approximation to the optimal mechanism for
BMUMD I.

Proof.
An ordering σ is good if vσ(a) − pa ≥ vσ(b) − pb for all a < b, a, b ∈ Ji.
I.e., an agent i should always take the first offer to maximize his surplus.
Fix a good ordering σ on I. Then,

R(p,σ)
I (v) = R(p,σ)

I′ (v) ≥ Rp
I′(v)
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Approximation of Optimal Mechanism on BSMD

Summary

Feasibility const. Base Mechanism Bound

General matroid SPM
√

π/2 – 2
OPM 2 – O(log k)
VCG 2

k-uniform, partition SPM 1.25 – e/(e− 1) ≈ 1.58
OPM 2

Graphical OPM 2 – 3

Intersection matroid SPM 1.25 – 3

Intersection of part. mat. OPM 2 – 6.75

Non-matroid SPM, OPM Ω(log n/ log logn) – ?
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Approximation of Optimal Mechanism on BSMD Approximation through SPMs

2-approx. for general matroids
Proof (1)

Theorem
For a BSMD instance I, there exist prices p and ordering σ such that
R(p,σ) = S 2-approx. RM for I.

Proof.
Note that, without the feasibility constraints, we can archive revenue of∑

i piqi. Let S = {i1 < i2 < · · · < il} be the set of agents served and
Sj = {i1 < . . . < ij}. Let Bj = span(Sj) \ span(Sj−1) ⊆ {i | i ≥ ij},
then Bj is the set of agents blocked by ij+1.
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Approximation of Optimal Mechanism on BSMD Approximation through SPMs

2-approx. for general matroids
Proof (2)

Proof.
Then, the lost revenue given that S is served is:

∑
1≤j≤l

∑
i∈Bj

piqi ≤ p1

 ∑
i∈span(S1)

qi

+
∑

1<j≤l

pj

∑
i∈Bj

qi


=

∑
1≤j<l

(pj − pj+1)
∑

i∈span(Sj)

qi

+ pl

 ∑
i∈span(Sl)

qi


≤

∑
1≤j<l

(pj − pj+1) · j + pl · l ≤
∑

1≤j<l

pj .
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Approximation of Optimal Mechanism on BSMD Approximation through SPMs

2-approx. for general matroids
Proof (3)

Proof.
Thus,

E[revenue lost] =
∑
S

∑
j∈S

pj · Pr[S served] = R(p,σ).

which follows RM ≤
∑

j pjqj ≤ 2R(p,σ)
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Approximation of Optimal Mechanism on BSMD Approximation through OPMs

O(log k)-approx. for general matroids
Proof (1)

Theorem
For a BSMD instance I, there exist prices p such that Rp

O(log k)-approx. RM for I, where k = maxS∈J r(S) is the maximum
rank of independent sets of the matroid.

Proof.
Note that the worst allocation is when agents arrive in the order of
increasing prices; let σ be that order. Note that
R(p,σ) =

∑
i cipiqi ≥

1
2

∑
i piqi.
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Approximation of Optimal Mechanism on BSMD Approximation through OPMs

O(log k)-approx. for general matroids
Proof (2)

Proof.
Consider p = 1; then

∑
i ciqi ≥

1
2

∑
i qi. Then, we have

1

2

∑
i

qi ≤
∑
i

ciqi ≤
1

4

∑
i

qi +
3

4

∑
i:ci≥1/4

qi,

and thus, ∑
i:ci≥1/4

qi ≥
1

3

∑
i

qi.
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Approximation of Optimal Mechanism on BSMD Approximation through OPMs

O(log k)-approx. for general matroids
Proof (3)

Proof.
Then, Let G = {i | ci ≥ 1

4}, the revenue by G is∑
i∈G

cipiqi ≥
1

4

∑
i∈G

pMi qMi .

Note that |G| ≥ 1
3n.
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Approximation of Optimal Mechanism on BSMD Approximation through OPMs

O(log k)-approx. for general matroids
Proof (4)

Proof.
By setting l = ⌈1 + log3/2 k⌉, we can partition [n] into l sets with total

revenue of at least RM/4. We can conclude that there exists a set whose
revenue is at least 1/4l · RM = Ω(1/ log k) · RM .

Chawla et al. Multi-parameter MD and Posted Pricing May 1, 2023 34 / 45



Approximation of Optimal Mechanism on BSMD Approximation through OPMs

6.75-approx. for intersection of partition matroids
Proof (1)

Theorem
Let I be a BSMD instance with a feasibility constraints given by the
intersection of two partition matroids. Then, there exists a set of prices p
such that Rp 6.75-approximates RM for I.

Proof.
Let qi = qMi /3 and pi = F−1

i (1− qi). This mechanism serves agents in
any arbitrary order (hence OPM), but offers a price pi for agent i. We now
prove that ci ≥ 4/9 = 1/6.75, then Rp =

∑
i cipiqi ≥ 4/9

∑
i p

M
i qMi /3.
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Approximation of Optimal Mechanism on BSMD Approximation through OPMs

6.75-approx. for intersection of partition matroids
Proof (2)

Proof.
LetM1 andM2 be two partition matroids. for j = 1, 2, let agent i be in
partition Pj ofMj and kx = rMx(Px). Then, the expected number of
agents in Pj desiring service is∑

i∈Pj

qi ≤ kj/3.
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Approximation of Optimal Mechanism on BSMD Approximation through OPMs

6.75-approx. for intersection of partition matroids
Proof (3)

Proof.
Let Ej be the event that at most kj − 1 agents from Pj desire service.
Then i is always considered when both E1 and E2 happen. Thus,

ci ≥ Pr[E1 ∩ E2] ≥ 2/3 · 2/3.
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Approximation of Optimal Mechanism on BMUMD

Summary

Feasibility const. Concept / Mechanism Bound

Multi-unit, multi-item, unit-demand DSIC / OPM 6.75

Graphical w/ unit-demand DSIC / OPM 32/3

Intersection matroid undominated / SPM 8

Comb. auction w/ small bundles undominated / SPM 8
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Approximation of Optimal Mechanism on BMUMD

Multi-unit, Multi-item, unit-demand

Theorem
Consider an instance of BMUMD where the seller has multiple copies of n
items on sale, and agents are unit-demand. then, there exists an
6.75-approximate OPM for this instance.

Proof.
From Theorem 4 (α-approximation for BMUMD) and
Theorem 13 (6.75-approx. for BSMD w/ two part. mat.).
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How to find a near-optimal price sequence
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How to find a near-optimal price sequence

Assumptions

▶ An algorithm that computes the optimal price pi to charge to a
single-parameter agent given by Fi. (Note that, with given x, we can
use this algorithm to find an optimal price in [x,∞).)

▶ An oracle that, given a value v, returns Fi(v) and fi(v).

▶ An oracle that, given a probability α, returns F−1
i (α).

▶ An algorithm to maximize social welfare over the given feasibility
constraint (Myerson’s).
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How to find a near-optimal price sequence

Algorithm

1. Let ϵ = 1/3n. Sample N = 4n4 log n/ϵ2 value profiles from F .

2. Estimate qMi using the samples; call q̂Mi .

3. If q̂Mi < 1/n2, set q̂i = 1/n2. Else, set q̂i = q̂Mi /(1− ϵ).

4. Compute p̂i = F−1
i (1− q̂i).

5. Find the optimal price pi in [p̂i,∞); let qi = 1− Fi(pi).

6. Output pi’s, and order of agents in decreasing prices.
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How to find a near-optimal price sequence

Proof

Lemma
With prob. at least 1− 2

n , we have q̂i ∈ [qMi , (1 + 3ϵ)qMi + 2/n2].

Proof.
Pr[|q̂Mi − qMi | ≥ ϵqMi ] ≤ 2/n2 by Chernoff bounds.

With pMi ∈ [p̂i,∞), we have pMi qMi ≤ piqi.
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How to find a near-optimal price sequence

Proof

Let S = {i | q̂Mi < 1/n2}. Then, the probability of a mechanism offer to
anyone in S is at most 1/n. Suppose not, then, by the prob. of 1− 1/n,
our revenue from i is piqi > pMi qMi . Thus, conditioned on the lemma
(with probability of 1− 2/n), we get a (1− o(1)) approx. to the optimal
mechanism.
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