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Introduction

Introduction

A clock auction is a multi-round mechanism that suggests a personal clock
price, that is increasing over rounds, to each buyer. In each round, every
buyer chooses either to leave or stay.

The authors construct clock auction mechanisms,
which give O(log log k)-approximation of maximum expected welfare.

1. Deterministic single-price clock auction under full access to priors
2. Deterministic clock auction under limited access to priors

3. Randomized prior-free clock auction
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Preliminaries

Basic Notations

» buyer i € N :=[1,n] = [n]
» |'s private value v, v := (Vj)jen
» feasibility constraint F < 2N

» F is downward-closed: F € F implies F' € F for every F/ < F
» §=(51,...,5Sk) denotes the collection of maximal feasible sets in F.
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Preliminaries

Bayesian Setting, Prior-free Setting

1. Bayesian Setting:
» each value vi ~ Dj, v ~ D := X, D;
> the expected social welfare of an auction Auc, E,.p[AUC]
> OPT = Ey.p[maxrer{Xicr vi}] (= E[maxscs Xjes vil)
2. Prior-free Setting:

> v is chosen adversarially
> auction is randomized
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Deterministic Single-Price Auction with Priors
O(log log k)-Approx. with Full Prior Info.

Theorem

Every downward-closed setting with k maximal sets admits a deterministic
single-price clock auction that obtains an O(log log k) approximation to
the expected optimal welfare if the full distribution D is known.

For the following two auctions, we choose one with the higher expected
social welfare:

1. Let p; = 0 for all i € [n], then choose arg maxses > ;s E[vi].

2. Choose a j € [0,log(10log k + 1)] and let p; = A - 217 for all i € [n],
where

A=E

max (2 vi-I[vi > ts] -1[|S(ts,v)| < 10logk + 1])] :

i€eS
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.

Notations on High-Value Buyers

Note that S denotes the set of the maximal feasible set.
Let us define

S(t,v):={ieS|vi>t}

Then, the threshold ts is the value satisfying

Ey [|S(ts,v)|] = log k.

Then, S(ts,v) denotes roughly log k-top high-value buyers in S.

Lemma

Pr{3x € [0, ts) : |S(x,v)| > 10 - E[|S(x, v)|]] = o(1/k3).
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.

Low-High Decomposition

We divide OPT into two components, LOW and HIGH.

OPT =E maxEv,- <E maxZ\V/,-s +E maxZ\A/,-s ,
SeS 4 SeS 4 ’ SeS 4 ’
i€eS i€eS ieS
=:LOW =:HIGH

where
\7,'75 = min{tg, V,'} and \7,'75 =V~ ]I[V,' > ts] .

Feldman et al. Bayesian and Randomized Clock Auctions 8/29



Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.
High-Core and High-Tail (1)

Recall HIGH, and define HIGH-CORE.
» HIGH = E [maxses Xjcs Vi - I[v; > ts]]
» HIGH-CORE := E [maxses X,jcs Vi,s - I[|S(ts,v)| < 10log k + 1]]

Then,

HIGH < HIGH-CORE + E, [max [Z Vis-1[|S(ts,v)| > 10log k + 1]]]
Ses ieS
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.
High-Core and High-Tail (2)

HIGH < HIGH-CORE + E, [max [Z Vs - 1[|S(ts,v)| > 10log k + 1]”
Ses ieS
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.
High-Core and High-Tail (2)

HIGH < HIGH-CORE + E, [max [Z 05 -1[|S(ts,v)| > 10log k + 1]”
Ses ieS

< HIGH-CORE + )" E, [Z 05 -1[|S(ts,v)| > 10log k + 1]]
SeS i€eS
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.
High-Core and High-Tail (2)
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.
High-Core and High-Tail (2)

HIGH < HIGH-CORE + E, [max [Z 05 -1[|S(ts,v)| > 10log k + 1]”
Ses ieS

< HIGH-CORE + )" E, [Z 05 -1[|S(ts,v)| > 10log k + 1]]
SeS i€eS

< HIGH-CORE + )" K, [Z v; - I|S(ts,v)\{i}| > 10log k]]
SeS ieS

< HIGH-CORE + > »"E[v] - Pr{|S(ts,v)\{i}| > 10log k]
SeS ieS

=:HIGH-TAIL
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.
Cover High-Tail

Lemma: Pr[3x € [0,ts) : |S(x,v)| > 10 - E,[|S(x,v)|]] = o(1/k?).

Then,
HIGH-TAIL = Y Y E[vi] - Pr[|S(ts,v)\{i}| > 10log k]
Se§S ieS
< > Y E[vi] - o(1/K%).
Se§S ieS

Note that the first auction, letting p; = 0 for all i € [n], will get the
expected social welfare of

@ggE[Z]/ Y Ev] = )] Y Evi] - o(1/K7).

ieS Se§S ieS Se§S ieS
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.

Low-Core and Low-Tail

Recall LOW, and define LOW-CORE.
» LOW = E [maxses D jes Min(v;, ts)]
» LOW-CORE :=

E [rya‘;( Vis - 1[Vx€e[0,ts) : |S(x,v)| <10-E[|S(x,v)|] + 1]}
€

We omit details. Similar to the case of HIGH-TAIL,
LOW < LOW-CORE + LOW-TAIL

and LOW-TAIL is covered by the “zero-price auction”.

Feldman et al. Bayesian and Randomized Clock Auctions 12/29



Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.
Cover Low-Core
1. Note that >}, s Vis = (t)s |S(x,v)|dx.
2. Igs)(v) :=I[Vx € [0,ts) : [S(x,v)| < 10-Ey[|S(x,v)|] +1].

LOW-CORE = E |:I‘2€a§( [V,"s . ]IE(S) (V)]:|
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Deterministic Single-Price Auction with Priors
Proof for Full Prior Info.
Cover Low-Core
1. Note that >, s Vis = 85 |S(x, v)|dx.
2. Tgesy(v) =T [Vx € [0, ts) : |S(x,v)| < 10-Ey[|S(x,v)[] +1].

ts
LOW-CORE = E [max |:]Ig(5) (v) - f \S(X,v)]dx”
SeS 0
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Deterministic Single-Price Auction with Priors
Proof for Full Prior Info.
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Deterministic Single-Price Auction with Priors
Proof for Full Prior Info.
Cover Low-Core
1. Note that >, s Vis = 85 |S(x, v)|dx.
2. Tgesy(v) =T [Vx € [0, ts) : |S(x,v)| < 10-Ey[|S(x,v)[] +1].

ts
LOW-CORE = E [max |:]Ig(5) (v) - f \S(X,v)]dx”
SeS 0

< max [Lts(lO -E(]S(x,v)| + l)dx}

< max
Ses

fs(n CE(S(x, v)|)dx]

0
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.
Cover Low-Core
1. Note that >, s Vis = 85 |S(x,v)|dx.
2. Tgs)(v) :=T[Vx € [0,ts) : [S(x,v)| < 10-Ey[|S(x,v)|] +1].

ts
LOW-CORE = E [max |:]Ig(5) (v) - f \S(X,v)]dx”
SeS 0

< max [LtS(IO -E(]S(x,v)| + l)dx}

< max
Ses [

fts(n - E(|5(x,v)|)dx}

0

<11-@§§<EUE(\5(X7V)DdX] 11- maXE[ZS ]

0

= LOW-CORE is also covered by the zero-price auction.
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.
High-Core (1)

Lemma
Let m be any positive integer, and let

A:=FE [ryea‘%( (; \7,"5 : ]I[|S(t5,v)| < m])] .

There exists a uniform price p such that

A < O(logm) -E [rgeag (ZE[V,’ |vi=p]-Ilv >p]>].

ieS

Moreover, E [maxses (D5 E[vi | vi = p] -1 [v; = p])]
is the expected welfare of price-p clock auction.
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Deterministic Single-Price Auction with Priors

Proof for Full Prior Info.
High-Core (2)

Recall the second auction,
» choose a j € [0,log(10log k + 1)] and
> let p; = A - 2YJ for all i € [n], where

> A is chosen by letting m = 10log k + 1.

Then,
HIGH-CORE = E 0 s 1[|S(ts,v)| < 10log k + 1
0 max », 0i.s - 1[|S(ts,v)| < 10logk + 1]

ieS
= A < O(loglog k) - E[auc]
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Deterministic Single-Price Auction with Priors

O(log log k)-Approx. with Full Prior Info.
Recall

Theorem

Every downward-closed setting with k maximal sets admits a deterministic
single-price clock auction that obtains an O(log log k) approximation to
the expected optimal welfare if the full distribution D is known.

For the following two auctions, we choose one with the higher expected
social welfare:

1. Let p; = 0 for all i € [n], then choose arg maxses > ;s E[vi].

2. Choose a j € [0,log(10log k + 1)] and let p; = A - 217/ for all i € [n],
where

max (Z vi - I[vi > ts] - I[|S(ts,v)| < 10logk + 1])] :

ieS
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Deterministic Clock Auction with Limited Information

O(log log k)-Approx. with Limited Prior Info.

Theorem

Every downward-closed setting with k maximal sets admits a uniform-price
deterministic clock auction that obtains an O(loglog k) approximation to
the expected optimal welfare if E[v;] for each i € N and

OPT = Ey[maxses D e Vi| is known.

1. If maxses X jes E[vi] = OPT/loglog k,
then choose arg maxses ;s E[vi].
2. Otherwise, increase p until

»> the active buyers A is feasible, or
> there exists some feasible F € A and |F|-p > g.
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Deterministic Clock Auction with Limited Information

O(log log k)-Approx. with Limited Prior Info.

Desired goal g

Lemma
Let m be any positive integer, and let

A=E Vis- < .
[ryg (Z Vis - L[|S(ts,v)| < m])]
i€S
There exists an o = O(log m) and a uniform price p such that

A< apE [rgga‘;(z;]l[v,- > p]] or A < aE [rpe"?vxE[v |vi=p]-I[v, = p]}
1

Let the goal g = OPT /4a.
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Deterministic Clock Auction with Limited Information

Proof for Limited Prior Info.
Sketch of Proof

With a similar argument with the full prior info,
the first auction covers LOW + HIGH-TAIL.

Note that the second auction with price p.
> The set of active buyers A is feasible, or
> there exists some feasible F < A and |F|-p > g = OPT/4a.

Let T(v) be the largest feasible set of buyers with price p.

1. When E[|T(v)|] = 8, with constant probability we serve at least half
the expected number of buyers and obtain the
O(log log k)-approximation from the revenue.

2. When E[| T(v)|] < 8, the expected social welfare is within a constant
factor of the single highest value buyer.
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Randomized Prior-Free Clock Auction

O(log log k)-Approx. without Prior Info.

Theorem
Every downward-closed setting with k maximal sets admits a randomized

clock auction that obtains an O(log log k)-approximation to the expected
optimal welfare.

Hedging Auction. With probability 1/2 run of the following auctions:
1. Water-filling clock auction

2. Sampling clock auction
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Randomized Prior-Free Clock Auction

O(log log k)-Approx. without Prior Info.

Water-Filling Clock Auction

Water-Filling Clock Auction. Let A<— N and p; < 0 for all i e N,
and do the following steps while A becomes feasible.

1. Let W « arg maXfeasible SCA [Zies Pi] :
2. Let £ < minjcaw {pi} -

3. For each buyer i € AA\W with p; = ¢,

3.1 Increase p;.
3.2 If i rejects, A — A\{i}.

The above auction obtains welfare at least

lieF:vi> 2.
pepax_p-lieF:vi=pll/

This then translates to an O(log |S|)-approx. for any given set S.
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Randomized Prior-Free Clock Auction

O(log log k)-Approx. without Prior Info.

Sampling clock auction

Sampling Clock Auction.

1. For each buyer i, “sample” the value of i with probability 1/2.

2. Let R « argmaxses v(S n T). Return R\T.
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Randomized Prior-Free Clock Auction

O(log log k)-Approx. without Prior Info.

Recall

Theorem

Every downward-closed setting with k maximal sets admits a randomized

clock auction that obtains an O(loglog k)-approximation to the expected
optimal welfare.

Hedging Auction. With probability 1/2 run of the following auctions:
1. Water-filling clock auction

2. Sampling clock auction
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Randomized Prior-Free Clock Auction

Proof for Full Prior Info.
When Sets of High Value are Small

Let

1. Siop denote the 60 log k highest value buyers in S, and
2. 7(S) denote the threshold (= the smallest value in Sip).

Then, the water-filling clock auction gives
O(log log k)-approximation to v(Oop) where O is an optimal feasible set.

Remains to show that the sampling clock auction obtains an
O(log log k)-approximation to v(O) — v(Okep).
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Randomized Prior-Free Clock Auction

Proof for Full Prior Info.

When Sets of High Value are Large (1)

We use the following lemma.
Lemma

When running the sampling auction (T denotes sampled buyers),
Pr3x € [0,7(S)] - |T n S(x,v)| ¢ [1/9,8/9] - [S(x,v)[] = o(1/K?).

Then,

Pr[vS e S,¥xe[0,7(S)]: | T n S(x,v)| € [1/9,8/9] - |S(x,v)|]
=1—o(1/k?).
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Randomized Prior-Free Clock Auction

Proof for No Prior Info.
When Sets of High Value are Large (2)
Recall the water-falling clock auction obtains welfare at least

lieFivi= 2.
b By Polie Pz Pl

The auction covers OPT = v(0) < 100 - maxses V(Stop)-

Thus we can assume v(0)/100 > maxses V(Stop)-

Let S* := argmaxses v(S N T).
Then the random sampling auction obtains welfare v(5* n U) where
U= N\T.
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Randomized Prior-Free Clock Auction

Proof for No Prior Info.
When Sets of High Value are Large (3)
1. We assume v(0)/100 > maxses v(Stop)-
2. §* =argmaxsesv(Sn T).
3. The random sampling auction obtains v(5* n U).
4. With probability 1 — o(1/k),

VSe S, Vxe[0,7(S)] :|T nS(x,v)| €[1/9,8/9] - |S(x,v)]

With probability 1 — o(1/k),

v(§*n T)

Feldman et al. Bayesian and Randomized Clock Auctions 27/29



Randomized Prior-Free Clock Auction

Proof for No Prior Info.
When Sets of High Value are Large (3)
1. We assume v(0)/100 > maxses v(Stop)-
2. §* =argmaxsesv(Sn T).
3. The random sampling auction obtains v(5* n U).
4. With probability 1 — o(1/k),
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Randomized Prior-Free Clock Auction

Proof for No Prior Info.
When Sets of High Value are Large (3)
1. We assume v(0)/100 > maxses v(Stop)-
2. §* =argmaxsesv(Sn T).
3. The random sampling auction obtains v(5* n U).
4. With probability 1 — o(1/k),

VSe S, Vxe[0,7(S)] :|T nS(x,v)| €[1/9,8/9] - |S(x,v)]

With probability 1 — o(1/k),
(0)
v(§*nT)=v(0n T)Zf | T N O(x,v)|dx
0
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Randomized Prior-Free Clock Auction

Proof for No Prior Info.
When Sets of High Value are Large (3)
1. We assume v(0)/100 > maxses v(Stop)-
2. §* =argmaxsesv(Sn T).
3. The random sampling auction obtains v(5* n U).
4. With probability 1 — o(1/k),

VSe S, Vxe[0,7(S)] :|T nS(x,v)| €[1/9,8/9] - |S(x,v)]

With probability 1 — o(1/k),

(0)
v(§*nT)=v(0n T)Zf | T N O(x,v)|dx

0

L 100 v)ldx >

- 5+ (V(0) = v(Oup))

\2
3
S
[
—_
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Randomized Prior-Free Clock Auction

Proof for No Prior Info.
When Sets of High Value are Large (3)
1. We assume v(0)/100 > maxses v(Stop)-
2. §* =argmaxsesv(Sn T).
3. The random sampling auction obtains v(5* n U).
4. With probability 1 — o(1/k),

VSe S, Vxe[0,7(S)] :|T nS(x,v)| €[1/9,8/9] - |S(x,v)]

With probability 1 — o(1/k),

7(0)
v(§*nT)=v(0n T)ZL | T N O(x,v)|dx
7(0) 1 1
> [ 5100 v)ldx = § - (v(0) ~ (Oup)
0
1 11v(O)
~ 100
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Randomized Prior-Free Clock Auction

Proof for No Prior Info.
When Sets of High Value are Large (4)
1. We assume v(0)/100 > maxses v(Stop)-
2. §* =argmaxsesv(Sn T).
3. The random sampling auction obtains v(5* n U).

4. With probability 1 — o(1/k), v(S* N T) > HlvT(OO) and

VS eS8, ¥xe[0,7(S)] :|T nS(x,v)| €[1/9,8/9] - |S(x,v)]

Again, with probability 1 — o(1/k),

T(5%)
v(S*mU))j U S*(x,v)|dx =
0

- (V(S%) = v(Stop))

O =
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Randomized Prior-Free Clock Auction

Proof for No Prior Info.
When Sets of High Value are Large (4)
1. We assume v(0)/100 > maxses v(Stop)-
2. §* =argmaxsesv(Sn T).
3. The random sampling auction obtains v(5* n U).

4. With probability 1 — o(1/k), v(S* N T) > HlvT(OO) and

VS eS8, ¥xe[0,7(S)] :|T nS(x,v)| €[1/9,8/9] - |S(x,v)]

Again, with probability 1 — o(1/k),

T(5%)

STV | U NS ()l > 5 (v(S7) = v(Sy)

(- 4) - (5742

1
>
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Randomized Prior-Free Clock Auction

Proof for No Prior Info.
When Sets of High Value are Large (4)
1. We assume v(0)/100 > maxses v(Stop)-
2. §* =argmaxsesv(Sn T).
3. The random sampling auction obtains v(5* n U).
)

. . 11v(O
4. With probability 1 — o(1/k), v(S* N T) = 170(0

VS eS8, Vxe[0,7(S)]:|T nS(x,v)| €[1/9,8/9] - |S(x,v)|

and

Again, with probability 1 — o(1/k),

T(5%) 1
STV | U NS ()l > 5 (v(S7) = v(Sy)
1 . v(0) 1 . v(0)
>9-(v(5 ) — 100 > >3 (v(S NnT)— 100>
4 1 <1lv(0) B v(O)) - v(0)
9 100 100 / = 900
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Randomized Prior-Free Clock Auction

Thank you
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