Bayesian and Randomized Clock Auctions

Michal Feldman Vasilis Gkatzelis Nick Gravin Daniel Schoepflin

Presented by Sicheol Sung

Introduction

Preliminaries

Deterministic Single-Price Auction with Priors

Deterministic Clock Auction with Limited Information

Randomized Prior-Free Clock Auction

Introduction

A *clock auction* is a multi-round mechanism that suggests a personal clock price, that is increasing over rounds, to each buyer. In each round, every buyer chooses either to leave or stay.

The authors construct clock auction mechanisms, which give $O(\log \log k)$ -approximation of maximum expected welfare.

- 1. Deterministic single-price clock auction under full access to priors
- 2. Deterministic clock auction under limited access to priors
- 3. Randomized prior-free clock auction

Basic Notations

- buyer $i \in N := [1, n] = [n]$
- i's private value v_i , $\mathbf{v} := (v_i)_{i \in N}$
- feasibility constraint $\mathcal{F} \subseteq 2^N$
 - ▶ \mathcal{F} is downward-closed: $F \in \mathcal{F}$ implies $F' \in \mathcal{F}$ for every $F' \subseteq F$
 - $S = (S_1, \dots, S_k)$ denotes the collection of maximal feasible sets in F.

Bayesian Setting, Prior-free Setting

- 1. Bayesian Setting:
 - each value $v_i \sim D_i$, $\mathbf{v} \sim \mathbf{D} := \times_{i \in N} D_i$
 - the expected social welfare of an auction AUC, $\mathbb{E}_{\mathbf{v} \sim \mathbf{D}}[AUC]$
 - $\qquad \qquad \mathsf{OPT} = \mathbb{E}_{\mathbf{v} \sim \mathbf{D}} \big[\mathsf{max}_{F \in \mathcal{F}} \{ \sum_{i \in F} v_i \} \big] \; \big(= \mathbb{E} \big[\mathsf{max}_{S \in \mathcal{S}} \sum_{i \in S} v_i \big] \big)$
- 2. Prior-free Setting:
 - **v** is chosen adversarially
 - auction is randomized

Theorem

Every downward-closed setting with k maximal sets admits a deterministic single-price clock auction that obtains an $O(\log \log k)$ approximation to the expected optimal welfare if the full distribution \mathbf{D} is known.

For the following two auctions, we choose one with the higher expected social welfare:

- 1. Let $p_i = 0$ for all $i \in [n]$, then choose arg $\max_{S \in S} \sum_{i \in S} \mathbb{E}[v_i]$.
- 2. Choose a $j \in [0, \log(10 \log k + 1)]$ and let $p_i = \Delta \cdot 2^{1-j}$ for all $i \in [n]$, where

$$\Delta = \mathbb{E}\left[\max_{S \in \mathcal{S}} \left(\sum_{i \in S} v_i \cdot \mathbb{I}\left[v_i > t_S\right] \cdot \mathbb{I}\left[|S(t_S, \mathbf{v})| \leqslant 10 \log k + 1\right]\right)\right].$$

Notations on High-Value Buyers

Note that S denotes the set of the maximal feasible set.

Let us define

$$S(t, \mathbf{v}) := \{i \in S \mid v_i > t\}.$$

Then, the threshold t_S is the value satisfying

$$\mathbb{E}_{\mathbf{v}}\left[|S(t_{S},\mathbf{v})|\right] = \log k.$$

Then, $S(t_S, \mathbf{v})$ denotes roughly log k-top high-value buyers in S.

Lemma

$$\Pr[\exists x \in [0, t_S) : |S(x, \mathbf{v})| > 10 \cdot \mathbb{E}_{\mathbf{v}}[|S(x, \mathbf{v})|]] = o(1/k^2).$$

Low-High Decomposition

We divide OPT into two components, LOW and HIGH.

$$\mathsf{OPT} = \mathbb{E}\left[\max_{S \in \mathcal{S}} \sum_{i \in S} v_i\right] \leqslant \mathbb{E}\left[\max_{S \in \mathcal{S}} \sum_{i \in S} \check{v}_{i,S}\right] + \mathbb{E}\left[\max_{S \in \mathcal{S}} \sum_{i \in S} \hat{v}_{i,S}\right],$$
=:LOW
=:HIGH

where

$$\check{v}_{i,S} := \min\{t_S, v_i\} \text{ and } \hat{v}_{i,S} := v_i \cdot \mathbb{I}\left[v_i > t_S\right].$$

High-Core and High-Tail (1)

Recall HIGH, and define HIGH-CORE.

- ▶ HIGH = $\mathbb{E}\left[\max_{S \in \mathcal{S}} \sum_{i \in S} v_i \cdot \mathbb{I}\left[v_i > t_S\right]\right]$
- ▶ HIGH-CORE := $\mathbb{E}\left[\max_{S \in \mathcal{S}} \sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I}\left[\left|S(t_S, \mathbf{v})\right| \leq 10 \log k + 1\right]\right]$

Then,

$$\mathsf{HIGH} \leqslant \mathsf{HIGH\text{-}CORE} + \mathbb{E}_{\mathbf{v}} \left[\max_{S \in \mathcal{S}} \left[\sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I}\left[|S(t_S, \mathbf{v})| > 10 \log k + 1 \right] \right] \right]$$

$$\begin{aligned} \mathsf{HIGH} &\leqslant \mathsf{HIGH\text{-}CORE} + \mathbb{E}_{\mathbf{v}} \left[\max_{S \in \mathcal{S}} \left[\sum_{i \in S} \hat{\mathbf{v}}_{i,S} \cdot \mathbb{I} \left[|S(t_S, \mathbf{v})| > 10 \log k + 1 \right] \right] \right] \\ &\leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \mathbb{E}_{\mathbf{v}} \left[\sum_{i \in S} \hat{\mathbf{v}}_{i,S} \cdot \mathbb{I} \left[|S(t_S, \mathbf{v})| > 10 \log k + 1 \right] \right] \\ &\leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \mathbb{E}_{\mathbf{v}} \left[\sum_{i \in S} \mathbf{v}_i \cdot \mathbb{I} \left[|S(t_S, \mathbf{v}) \setminus \{i\}| > 10 \log k \right] \right] \\ &\leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \sum_{i \in \mathcal{S}} \mathbb{E}[\mathbf{v}_i] \cdot \mathbf{Pr} \left[|S(t_S, \mathbf{v}) \setminus \{i\}| > 10 \log k \right] \\ &= : \mathsf{HIGH\text{-}TAIL} \end{aligned}$$

$$\begin{split} \mathsf{HIGH} &\leqslant \mathsf{HIGH\text{-}CORE} + \mathbb{E}_{\mathbf{v}} \left[\max_{S \in \mathcal{S}} \left[\sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I} \left[|S(t_S, \mathbf{v})| > 10 \log k + 1 \right] \right] \right] \\ &\leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \mathbb{E}_{\mathbf{v}} \left[\sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I} \left[|S(t_S, \mathbf{v})| > 10 \log k + 1 \right] \right] \\ &\leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \mathbb{E}_{\mathbf{v}} \left[\sum_{i \in S} v_i \cdot \mathbb{I} \left[|S(t_S, \mathbf{v}) \setminus \{i\}| > 10 \log k \right] \right] \\ &\leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{E}[v_i] \cdot \Pr\left[|S(t_S, \mathbf{v}) \setminus \{i\}| > 10 \log k \right] \\ &= : \mathsf{HIGH\text{-}TAIL} \end{split}$$

$$\begin{aligned} \mathsf{HIGH} &\leqslant \mathsf{HIGH\text{-}CORE} + \mathbb{E}_{\mathbf{v}} \left[\max_{S \in \mathcal{S}} \left[\sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I} \left[|S(t_S, \mathbf{v})| > 10 \log k + 1 \right] \right] \right] \\ &\leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \mathbb{E}_{\mathbf{v}} \left[\sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I} \left[|S(t_S, \mathbf{v})| > 10 \log k + 1 \right] \right] \\ &\leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \mathbb{E}_{\mathbf{v}} \left[\sum_{i \in S} v_i \cdot \mathbb{I} \left[|S(t_S, \mathbf{v}) \setminus \{i\}| > 10 \log k \right] \right] \\ &\leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{E} \left[v_i \right] \cdot \Pr \left[|S(t_S, \mathbf{v}) \setminus \{i\}| > 10 \log k \right] \\ &= : \mathsf{HIGH\text{-}TAIL} \end{aligned}$$

$$\begin{split} \mathsf{HIGH} \leqslant \mathsf{HIGH\text{-}CORE} + \mathbb{E}_{\mathbf{v}} \left[\max_{S \in \mathcal{S}} \left[\sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I} \left[|S(t_S, \mathbf{v})| > 10 \log k + 1 \right] \right] \right] \\ \leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \mathbb{E}_{\mathbf{v}} \left[\sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I} \left[|S(t_S, \mathbf{v})| > 10 \log k + 1 \right] \right] \\ \leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \mathbb{E}_{\mathbf{v}} \left[\sum_{i \in S} v_i \cdot \mathbb{I} \left[|S(t_S, \mathbf{v}) \setminus \{i\}| > 10 \log k \right] \right] \\ \leqslant \mathsf{HIGH\text{-}CORE} + \sum_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{E} [v_i] \cdot \Pr \left[|S(t_S, \mathbf{v}) \setminus \{i\}| > 10 \log k \right] \\ = : \mathsf{HIGH\text{-}TAIL} \end{split}$$

Cover High-Tail

Lemma:
$$\Pr[\exists x \in [0, t_S) : |S(x, \mathbf{v})| > 10 \cdot \mathbb{E}_{\mathbf{v}}[|S(x, \mathbf{v})|]] = o(1/k^2).$$

Then,

$$\begin{aligned} \mathsf{HIGH\text{-}TAIL} &= \sum_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{E}[v_i] \cdot \mathsf{Pr}\left[|S(t_S, \mathbf{v}) \backslash \{i\}| > 10 \log k\right] \\ &\leqslant \sum_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{E}[v_i] \cdot o(1/k^2). \end{aligned}$$

Note that the first auction, letting $p_i = 0$ for all $i \in [n]$, will get the expected social welfare of

$$\max_{S \in \mathcal{S}} \mathbb{E} \left[\sum_{i \in S} v_i \right] \geqslant \frac{1}{k} \cdot \sum_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{E}[v_i] \geqslant \sum_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{E}[v_i] \cdot o(1/k^2).$$

Low-Core and Low-Tail

Recall LOW, and define LOW-CORE.

- ▶ LOW = $\mathbb{E}\left[\max_{S \in \mathcal{S}} \sum_{i \in S} \min(v_i, t_S)\right]$
- ▶ LOW-CORE :=

$$\mathbb{E}\left[\max_{S\in\mathcal{S}}\check{\mathsf{v}}_{i,S}\cdot\mathbb{I}\left[\forall x\in[0,t_S):|S(x,\mathbf{v})|\leqslant10\cdot\mathbb{E}_{\mathbf{v}}[|S(x,\mathbf{v})|]+1\right]\right]$$

We omit details. Similar to the case of HIGH-TAIL,

and LOW-TAIL is covered by the "zero-price auction".

Cover Low-Core

- 1. Note that $\sum_{i \in S} \check{v}_{i,S} = \int_0^{t_S} |S(x, \mathbf{v})| dx$.
- 2. $\mathbb{I}_{\mathcal{E}(S)}(\mathbf{v}) := \mathbb{I}\left[\forall x \in [0, t_S) : |S(x, \mathbf{v})| \leqslant 10 \cdot \mathbb{E}_{\mathbf{v}}[|S(x, \mathbf{v})|] + 1\right].$

$$\begin{aligned} \mathsf{LOW\text{-}CORE} &= \mathbb{E}\left[\max_{S \in \mathcal{S}} \left[\check{v}_{i,S} \cdot \mathbb{I}_{\mathcal{E}(S)}(\mathbf{v})\right]\right] \\ \mathsf{LOW\text{-}CORE} &= \mathbb{E}\left[\max_{S \in \mathcal{S}} \left[\mathbb{I}_{\mathcal{E}(S)}(\mathbf{v}) \cdot \int_{0}^{t_{S}} |S(x,\mathbf{v})| dx\right]\right] \\ &\leqslant \max_{S \in \mathcal{S}} \left[\int_{0}^{t_{S}} (10 \cdot \mathbb{E}(|S(x,\mathbf{v})| + 1) dx\right] \\ &\leqslant \max_{S \in \mathcal{S}} \left[\int_{0}^{t_{S}} (11 \cdot \mathbb{E}(|S(x,\mathbf{v})|) dx\right] \\ &\leqslant 11 \cdot \max_{S \in \mathcal{S}} \mathbb{E}\left[\int_{0}^{t_{S}} (|S(x,\mathbf{v})|) dx\right] \leqslant 11 \cdot \max_{S \in \mathcal{S}} \mathbb{E}\left[\sum_{i \in \mathcal{S}} v_{i}\right] \end{aligned}$$

⇒ LOW-CORE is also covered by the zero-price auction.

Cover Low-Core

- 1. Note that $\sum_{i \in S} \check{v}_{i,S} = \int_0^{t_S} |S(x, \mathbf{v})| dx$.
- 2. $\mathbb{I}_{\mathcal{E}(S)}(\mathbf{v}) := \mathbb{I}\left[\forall x \in [0, t_S) : |S(x, \mathbf{v})| \leqslant 10 \cdot \mathbb{E}_{\mathbf{v}}[|S(x, \mathbf{v})|] + 1\right].$

$$\begin{aligned} \mathsf{LOW\text{-}CORE} &= \mathbb{E}\left[\max_{S \in \mathcal{S}} \left[\mathbb{I}_{\mathcal{E}(S)}(\mathbf{v}) \cdot \int_{0}^{t_{S}} |S(x, \mathbf{v})| dx\right]\right] \\ &\leqslant \max_{S \in \mathcal{S}} \left[\int_{0}^{t_{S}} (10 \cdot \mathbb{E}(|S(x, \mathbf{v})| + 1) dx\right] \\ &\leqslant \max_{S \in \mathcal{S}} \left[\int_{0}^{t_{S}} (11 \cdot \mathbb{E}(|S(x, \mathbf{v})|) dx\right] \\ &\leqslant 11 \cdot \max_{S \in \mathcal{S}} \mathbb{E}\left[\int_{0}^{t_{S}} (|S(x, \mathbf{v})|) dx\right] \leqslant 11 \cdot \max_{S \in \mathcal{S}} \mathbb{E}\left[\sum_{i \in S} v_{i}\right] \end{aligned}$$

→ LOW-CORE is also covered by the zero-price auction.

Cover Low-Core

- 1. Note that $\sum_{i \in S} \check{v}_{i,S} = \int_0^{t_S} |S(x, \mathbf{v})| dx$.
- 2. $\mathbb{I}_{\mathcal{E}(S)}(\mathbf{v}) := \mathbb{I}\left[\forall x \in [0, t_S) : |S(x, \mathbf{v})| \leq 10 \cdot \mathbb{E}_{\mathbf{v}}[|S(x, \mathbf{v})|] + 1\right].$

$$\begin{aligned} \mathsf{LOW\text{-}CORE} &= \mathbb{E}\left[\max_{S \in \mathcal{S}} \left[\mathbb{I}_{\mathcal{E}(S)}(\mathbf{v}) \cdot \int_{0}^{t_{S}} |S(x, \mathbf{v})| dx\right]\right] \\ &\leqslant \max_{S \in \mathcal{S}} \left[\int_{0}^{t_{S}} (10 \cdot \mathbb{E}(|S(x, \mathbf{v})| + 1) dx\right] \\ &\leqslant \max_{S \in \mathcal{S}} \left[\int_{0}^{t_{S}} (11 \cdot \mathbb{E}(|S(x, \mathbf{v})|) dx\right] \\ &\leqslant 11 \cdot \max_{S \in \mathcal{S}} \mathbb{E}\left[\int_{0}^{t_{S}} (|S(x, \mathbf{v})|) dx\right] \leqslant 11 \cdot \max_{S \in \mathcal{S}} \mathbb{E}\left[\sum_{i \in S} v_{i}\right] \end{aligned}$$

→ LOW-CORE is also covered by the zero-price auction.

Cover Low-Core

- 1. Note that $\sum_{i \in S} \check{v}_{i,S} = \int_0^{t_S} |S(x, \mathbf{v})| dx$.
- 2. $\mathbb{I}_{\mathcal{E}(S)}(\mathbf{v}) := \mathbb{I}\left[\forall x \in [0, t_S) : |S(x, \mathbf{v})| \leqslant 10 \cdot \mathbb{E}_{\mathbf{v}}[|S(x, \mathbf{v})|] + 1\right].$

$$\begin{aligned} \mathsf{LOW\text{-}CORE} &= \mathbb{E}\left[\max_{S \in \mathcal{S}} \left[\mathbb{I}_{\mathcal{E}(S)}(\mathbf{v}) \cdot \int_{0}^{t_{S}} |S(x, \mathbf{v})| dx\right]\right] \\ &\leqslant \max_{S \in \mathcal{S}} \left[\int_{0}^{t_{S}} (10 \cdot \mathbb{E}(|S(x, \mathbf{v})| + 1) dx\right] \\ &\leqslant \max_{S \in \mathcal{S}} \left[\int_{0}^{t_{S}} (11 \cdot \mathbb{E}(|S(x, \mathbf{v})|) dx\right] \\ &\leqslant 11 \cdot \max_{S \in \mathcal{S}} \mathbb{E}\left[\int_{0}^{t_{S}} (|S(x, \mathbf{v})|) dx\right] \leqslant 11 \cdot \max_{S \in \mathcal{S}} \mathbb{E}\left[\sum_{i \in S} v_{i}\right] \end{aligned}$$

→ LOW-CORE is also covered by the zero-price auction.

Cover Low-Core

- 1. Note that $\sum_{i \in S} \check{v}_{i,S} = \int_0^{t_S} |S(x, \mathbf{v})| dx$.
- 2. $\mathbb{I}_{\mathcal{E}(S)}(\mathbf{v}) := \mathbb{I}\left[\forall x \in [0, t_S) : |S(x, \mathbf{v})| \leqslant 10 \cdot \mathbb{E}_{\mathbf{v}}[|S(x, \mathbf{v})|] + 1\right].$

$$\begin{aligned} \mathsf{LOW\text{-}CORE} &= \mathbb{E}\left[\max_{S \in \mathcal{S}} \left[\mathbb{I}_{\mathcal{E}(S)}(\mathbf{v}) \cdot \int_0^{t_S} |S(x, \mathbf{v})| dx\right]\right] \\ &\leqslant \max_{S \in \mathcal{S}} \left[\int_0^{t_S} (10 \cdot \mathbb{E}(|S(x, \mathbf{v})| + 1) dx\right] \\ &\leqslant \max_{S \in \mathcal{S}} \left[\int_0^{t_S} (11 \cdot \mathbb{E}(|S(x, \mathbf{v})|) dx\right] \\ &\leqslant 11 \cdot \max_{S \in \mathcal{S}} \mathbb{E}\left[\int_0^{t_S} (|S(x, \mathbf{v})|) dx\right] \leqslant 11 \cdot \max_{S \in \mathcal{S}} \mathbb{E}\left[\sum_{i \in S} v_i\right] \end{aligned}$$

⇒ LOW-CORE is also covered by the zero-price auction.

High-Core (1)

Lemma

Let m be any positive integer, and let

$$\Delta := \mathbb{E}\left[\max_{S \in \mathcal{S}} \left(\sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I}\left[|S(t_S, \mathbf{v})| \leqslant m\right]\right)\right].$$

There exists a uniform price p such that

$$\Delta \leqslant O(\log m) \cdot \mathbb{E}\left[\max_{S \in S} \left(\sum_{i \in S} \mathbb{E}[v_i \mid v_i \geqslant p] \cdot \mathbb{I}[v_i \geqslant p]\right)\right].$$

Moreover, $\mathbb{E}\left[\max_{S\in\mathcal{S}}\left(\sum_{i\in S}\mathbb{E}[v_i\mid v_i\geqslant p]\cdot\mathbb{I}\left[v_i\geqslant p\right]\right)\right]$ is the expected welfare of price-p clock auction.

High-Core (2)

Recall the second auction,

- choose a $j \in [0, \log(10 \log k + 1)]$ and
- ▶ let $p_i = \Delta \cdot 2^{1-j}$ for all $i \in [n]$, where
- Δ is chosen by letting $m = 10 \log k + 1$.

Then,

$$\begin{aligned} \mathsf{HIGH\text{-}CORE} &= \mathbb{E}\left[\max_{S \in \mathcal{S}} \sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I}\left[|S(t_S, \mathbf{v})| \leqslant 10 \log k + 1\right]\right] \\ &= \Delta \leqslant O(\log \log k) \cdot \mathbb{E}[\mathsf{AUC}] \end{aligned}$$

Recall

Theorem

Every downward-closed setting with k maximal sets admits a deterministic single-price clock auction that obtains an $O(\log \log k)$ approximation to the expected optimal welfare if the full distribution \mathbf{D} is known.

For the following two auctions, we choose one with the higher expected social welfare:

- 1. Let $p_i = 0$ for all $i \in [n]$, then choose arg $\max_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{E}[v_i]$.
- 2. Choose a $j \in [0, \log(10 \log k + 1)]$ and let $p_i = \Delta \cdot 2^{1-j}$ for all $i \in [n]$, where

$$\Delta = \mathbb{E}\left[\max_{S \in \mathcal{S}} \left(\sum_{i \in S} v_i \cdot \mathbb{I}\left[v_i > t_S\right] \cdot \mathbb{I}\left[\left|S(t_S, \mathbf{v})\right| \leqslant 10 \log k + 1\right]\right)\right].$$

$O(\log \log k)$ -Approx. with Limited Prior Info.

Theorem

Every downward-closed setting with k maximal sets admits a uniform-price deterministic clock auction that obtains an $O(\log \log k)$ approximation to the expected optimal welfare if $\mathbb{E}[v_i]$ for each $i \in N$ and $OPT = \mathbb{E}_{\mathbf{v}}[\max_{S \in \mathcal{S}} \sum_{i \in S} v_i]$ is known.

- 1. If $\max_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{E}[v_i] \geqslant \mathsf{OPT}/\log\log k$, then choose $\arg\max_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{E}[v_i]$.
- 2. Otherwise, increase p until
 - the active buyers A is feasible, or
 - ▶ there exists some feasible $F \subseteq A$ and $|F| \cdot p \ge g$.

$O(\log \log k)$ -Approx. with Limited Prior Info.

Lemma

Let m be any positive integer, and let

$$\Delta := \mathbb{E}\left[\max_{S \in \mathcal{S}} \left(\sum_{i \in S} \hat{v}_{i,S} \cdot \mathbb{I}\left[|S(t_S, \mathbf{v})| \leqslant m
ight]
ight)
ight].$$

There exists an $\alpha = O(\log m)$ and a uniform price p such that

$$\Delta \leqslant \alpha \cdot p \cdot \mathbb{E}\left[\max_{S \in \mathcal{S}} \sum_{i \in S} \mathbb{I}\left[v_i \geqslant p\right]\right] \text{ or } \Delta \leqslant \alpha \cdot \mathbb{E}\left[\max_{i \in \mathcal{N}} \mathbb{E}\left[v \mid v_i \geqslant p\right] \cdot \mathbb{I}\left[v_i \geqslant p\right]\right]$$

Let the goal $g = \mathsf{OPT}/4\alpha$.

Proof for Limited Prior Info.

Sketch of Proof

With a similar argument with the full prior info, the first auction covers LOW + HIGH-TAIL.

Note that the second auction with price p.

- The set of active buyers A is feasible, or
- ▶ there exists some feasible $F \subseteq A$ and $|F| \cdot p \ge g = \mathsf{OPT}/4\alpha$.

Let $T(\mathbf{v})$ be the largest feasible set of buyers with price p.

- 1. When $\mathbb{E}[|T(\mathbf{v})|] \ge 8$, with constant probability we serve at least half the expected number of buyers and obtain the $O(\log \log k)$ -approximation from the revenue.
- 2. When $\mathbb{E}[|T(\mathbf{v})|] < 8$, the expected social welfare is within a constant factor of the single highest value buyer.

Theorem

Every downward-closed setting with k maximal sets admits a randomized clock auction that obtains an $O(\log \log k)$ -approximation to the expected optimal welfare.

Hedging Auction. With probability 1/2 run of the following auctions:

- 1. Water-filling clock auction
- 2. Sampling clock auction

Water-Filling Clock Auction

Water-Filling Clock Auction. Let $A \leftarrow N$ and $p_i \leftarrow 0$ for all $i \in N$, and do the following steps while A becomes feasible.

- 1. Let $W \leftarrow \arg \max_{\text{feasible } S \subseteq A} \left[\sum_{i \in S} p_i \right]$.
- 2. Let $\ell \leftarrow \min_{i \in A \setminus W} \{p_i\}$.
- 3. For each buyer $i \in A \setminus W$ with $p_i = \ell$,
 - 3.1 Increase p_i .
 - 3.2 If *i* rejects, $A \leftarrow A \setminus \{i\}$.

The above auction obtains welfare at least

$$\max_{p \in P, F \in \mathcal{F}} \left[p \cdot | i \in F : v_i \geqslant p | \right] / 2.$$

This then translates to an $O(\log |S|)$ -approx. for any given set S.

Sampling clock auction

Sampling Clock Auction.

- 1. For each buyer i, "sample" the value of i with probability 1/2.
- 2. Let $R \leftarrow \arg\max_{S \in \mathcal{S}} v(S \cap T)$. Return $R \setminus T$.

Recall

Theorem

Every downward-closed setting with k maximal sets admits a randomized clock auction that obtains an $O(\log \log k)$ -approximation to the expected optimal welfare.

Hedging Auction. With probability 1/2 run of the following auctions:

- 1. Water-filling clock auction
- 2. Sampling clock auction

When Sets of High Value are Small

Let

- 1. S_{top} denote the 60 log k highest value buyers in S, and
- 2. $\tau(S)$ denote the threshold (= the smallest value in S_{top}).

Then, the water-filling clock auction gives $O(\log \log k)$ -approximation to $v(O_{\text{top}})$ where O is an optimal feasible set.

Remains to show that the sampling clock auction obtains an $O(\log \log k)$ -approximation to $v(O) - v(O_{top})$.

When Sets of High Value are Large (1)

We use the following lemma.

Lemma

When running the sampling auction (T denotes sampled buyers),

$$\Pr[\exists x \in [0, \tau(S)] : |T \cap S(x, \mathbf{v})| \notin [1/9, 8/9] \cdot |S(x, \mathbf{v})|] = o(1/k^2).$$

Then,

$$\Pr\left[\forall S \in \mathcal{S}, \forall x \in [0, \tau(S)] : |T \cap S(x, \mathbf{v})| \in [1/9, 8/9] \cdot |S(x, \mathbf{v})|\right] \\ = 1 - o(1/k^2).$$

When Sets of High Value are Large (2)

Recall the water-falling clock auction obtains welfare at least

$$\max_{p \in P, F \in \mathcal{F}} \left[p \cdot \left| i \in F : v_i \geqslant p \right| \right] / 2.$$

The auction covers $OPT = v(O) < 100 \cdot \max_{S \in S} v(S_{top})$.

Thus we can assume $v(O)/100 \geqslant \max_{S \in \mathcal{S}} v(S_{top})$.

Let $S^* := \operatorname{arg\,max}_{S \in \mathcal{S}} v(S \cap T)$.

Then the random sampling auction obtains welfare $v(S^* \cap U)$ where $U = N \setminus T$.

When Sets of High Value are Large (3)

- 1. We assume $v(O)/100 \geqslant \max_{S \in \mathcal{S}} v(S_{top})$.
- 2. $S^* = \arg \max_{S \in \mathcal{S}} v(S \cap T)$.
- 3. The random sampling auction obtains $v(S^* \cap U)$.
- 4. With probability 1 o(1/k),

$$\forall S \in \mathcal{S}, \forall x \in [0, \tau(S)] : |T \cap S(x, \mathbf{v})| \in [1/9, 8/9] \cdot |S(x, \mathbf{v})|$$

$$v(S^* \cap T) \ge v(O \cap T) \ge \int_0^{\tau(O)} |T \cap O(x, \mathbf{v})| dx$$

$$\ge \int_0^{\tau(O)} \frac{1}{9} \cdot |O(x, \mathbf{v})| dx \ge \frac{1}{9} \cdot (v(O) - v(O_{top}))$$

$$\ge \frac{11v(O)}{100}$$

When Sets of High Value are Large (3)

- 1. We assume $v(O)/100 \geqslant \max_{S \in \mathcal{S}} v(S_{top})$.
- 2. $S^* = \arg \max_{S \in \mathcal{S}} v(S \cap T)$.
- 3. The random sampling auction obtains $v(S^* \cap U)$.
- 4. With probability 1 o(1/k),

$$\forall S \in \mathcal{S}, \forall x \in [0, \tau(S)] : |T \cap S(x, \mathbf{v})| \in [1/9, 8/9] \cdot |S(x, \mathbf{v})|$$

$$v(S^* \cap T) \stackrel{2}{\geqslant} v(O \cap T) \geqslant \int_0^{\tau(O)} |T \cap O(x, \mathbf{v})| dx$$

$$\geqslant \int_0^{\tau(O)} \frac{1}{9} \cdot |O(x, \mathbf{v})| dx \geqslant \frac{1}{9} \cdot (v(O) - v(O_{top}))$$

$$\geqslant \frac{11v(O)}{100}$$

When Sets of High Value are Large (3)

- 1. We assume $v(O)/100 \geqslant \max_{S \in \mathcal{S}} v(S_{top})$.
- 2. $S^* = \arg \max_{S \in \mathcal{S}} v(S \cap T)$.
- 3. The random sampling auction obtains $v(S^* \cap U)$.
- 4. With probability 1 o(1/k),

$$\forall S \in \mathcal{S}, \forall x \in [0, \tau(S)] : |T \cap S(x, \mathbf{v})| \in [1/9, 8/9] \cdot |S(x, \mathbf{v})|$$

$$v(S^* \cap T) \ge v(O \cap T) \ge \int_0^{\tau(O)} |T \cap O(x, \mathbf{v})| dx$$

$$\ge \int_0^{\tau(O)} \frac{1}{9} \cdot |O(x, \mathbf{v})| dx \ge \frac{1}{9} \cdot (v(O) - v(O_{top}))$$

$$\ge \frac{11v(O)}{100}$$

When Sets of High Value are Large (3)

- 1. We assume $v(O)/100 \geqslant \max_{S \in \mathcal{S}} v(S_{top})$.
- 2. $S^* = \arg \max_{S \in \mathcal{S}} v(S \cap T)$.
- 3. The random sampling auction obtains $v(S^* \cap U)$.
- 4. With probability 1 o(1/k),

$$\forall S \in \mathcal{S}, \forall x \in [0, \tau(S)] : |T \cap S(x, \mathbf{v})| \in [1/9, 8/9] \cdot |S(x, \mathbf{v})|$$

$$v(S^* \cap T) \geqslant v(O \cap T) \geqslant \int_0^{\tau(O)} |T \cap O(x, \mathbf{v})| dx$$

$$\stackrel{4}{\geqslant} \int_0^{\tau(O)} \frac{1}{9} \cdot |O(x, \mathbf{v})| dx \geqslant \frac{1}{9} \cdot (v(O) - v(O_{top}))$$

$$\geqslant \frac{11v(O)}{100}$$

When Sets of High Value are Large (3)

- 1. We assume $v(O)/100 \geqslant \max_{S \in \mathcal{S}} v(S_{top})$.
- 2. $S^* = \arg \max_{S \in \mathcal{S}} v(S \cap T)$.
- 3. The random sampling auction obtains $v(S^* \cap U)$.
- 4. With probability 1 o(1/k),

$$\forall S \in \mathcal{S}, \forall x \in [0, \tau(S)]: |T \cap S(x, \mathbf{v})| \in [1/9, 8/9] \cdot |S(x, \mathbf{v})|$$

$$v(S^* \cap T) \geqslant v(O \cap T) \geqslant \int_0^{\tau(O)} |T \cap O(x, \mathbf{v})| dx$$

$$\geqslant \int_0^{\tau(O)} \frac{1}{9} \cdot |O(x, \mathbf{v})| dx \geqslant \frac{1}{9} \cdot (v(O) - v(O_{top}))$$

$$\stackrel{1}{\geqslant} \frac{11v(O)}{100}$$

When Sets of High Value are Large (4)

- 1. We assume $v(O)/100 \geqslant \max_{S \in \mathcal{S}} v(S_{top})$.
- 2. $S^* = \arg \max_{S \in S} v(S \cap T)$.
- 3. The random sampling auction obtains $v(S^* \cap U)$.
- 4. With probability 1 o(1/k), $v(S^* \cap T) \geqslant \frac{11v(O)}{100}$ and

$$\forall S \in \mathcal{S}, \forall x \in [0, \tau(S)] : |T \cap S(x, \mathbf{v})| \in [1/9, 8/9] \cdot |S(x, \mathbf{v})|$$

Again, with probability 1 - o(1/k),

$$v(S^* \cap U) \geqslant \int_0^{\tau(S^*)} |U \cap S^*(x, \mathbf{v})| dx \geqslant \frac{1}{9} \cdot (v(S^*) - v(S_{\text{top}}^*))$$

$$\geqslant \frac{1}{9} \cdot \left(v(S^*) - \frac{v(O)}{100}\right) \geqslant \frac{1}{9} \cdot \left(v(S^* \cap T) - \frac{v(O)}{100}\right)$$

$$\geqslant \frac{1}{9} \cdot \left(\frac{11v(O)}{100} - \frac{v(O)}{100}\right) \geqslant \frac{v(O)}{900}$$

When Sets of High Value are Large (4)

- 1. We assume $v(O)/100 \geqslant \max_{S \in \mathcal{S}} v(S_{top})$.
- 2. $S^* = \arg \max_{S \in \mathcal{S}} v(S \cap T)$.
- 3. The random sampling auction obtains $v(S^* \cap U)$.
- 4. With probability 1 o(1/k), $v(S^* \cap T) \geqslant \frac{11v(O)}{100}$ and

$$\forall S \in \mathcal{S}, \forall x \in [0, \tau(S)] : |T \cap S(x, \mathbf{v})| \in [1/9, 8/9] \cdot |S(x, \mathbf{v})|$$

Again, with probability 1 - o(1/k),

$$v(S^* \cap U) \geqslant \int_0^{\tau(S^*)} |U \cap S^*(x, \mathbf{v})| dx \geqslant \frac{1}{9} \cdot (v(S^*) - v(S^*_{top}))$$

$$\stackrel{1}{\geqslant} \frac{1}{9} \cdot \left(v(S^*) - \frac{v(O)}{100} \right) \geqslant \frac{1}{9} \cdot \left(v(S^* \cap T) - \frac{v(O)}{100} \right)$$

$$\stackrel{1}{\geqslant} \frac{1}{9} \cdot \left(\frac{11v(O)}{100} - \frac{v(O)}{100} \right) \geqslant \frac{v(O)}{900}$$

When Sets of High Value are Large (4)

- 1. We assume $v(O)/100 \geqslant \max_{S \in \mathcal{S}} v(S_{top})$.
- 2. $S^* = \arg \max_{S \in S} v(S \cap T)$.
- 3. The random sampling auction obtains $v(S^* \cap U)$.
- 4. With probability 1-o(1/k), $v(S^* \cap T) \geqslant \frac{11v(O)}{100}$ and

$$\forall S \in \mathcal{S}, \forall x \in [0, \tau(S)] : |T \cap S(x, \mathbf{v})| \in [1/9, 8/9] \cdot |S(x, \mathbf{v})|$$

Again, with probability 1 - o(1/k),

$$\begin{split} v(S^* \cap U) &\geqslant \int_0^{\tau(S^*)} |U \cap S^*(x, \mathbf{v})| dx \geqslant \frac{1}{9} \cdot (v(S^*) - v(S^*_{\mathsf{top}})) \\ &\geqslant \frac{1}{9} \cdot \left(v(S^*) - \frac{v(O)}{100} \right) \geqslant \frac{1}{9} \cdot \left(v(S^* \cap T) - \frac{v(O)}{100} \right) \\ &\stackrel{4}{\geqslant} \frac{1}{9} \cdot \left(\frac{11v(O)}{100} - \frac{v(O)}{100} \right) \geqslant \frac{v(O)}{900} \end{split}$$

Randomized Prior-Free Clock Auction

Thank you