Learning-Augmented Mechanism Design

연세대학교 이국렬

Single Facility Location

 $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2 Goal : choose a location $f \in \mathbb{R}^2$ for a facility to minimize the social cost

Single Facility Location

 $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2 Goal: choose a location $f \in \mathbb{R}^2$ for a facility to minimize the social cost

- Each agent *i* suffers a cost $d(f, p_i)$

Single Facility Location

 $P = \{p_1, \cdots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2

Goal : choose a location $f \in \mathbb{R}^2$ for a facility to minimize the social cost

- Each agent *i* suffers a cost $d(f, p_i)$
- Egalitarian social cost : $\max_{p \in P} d(f, p)$, Utilitarian social cost : $\sum_{p \in P} d(f, p) / n$

- $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2 (unknown)
- A mechanism needs to ask the agents to report their preferred locations

 $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2 (unknown)

- A mechanism needs to ask the agents to report their preferred locations
- Each agent wants to reduce $d(f, p_i) \rightarrow \text{misreport his preferred location}$

 $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2 (unknown)

- A mechanism needs to ask the agents to report their preferred locations
- Each agent wants to reduce $d(f, p_i) \rightarrow \text{misreport his preferred location}$
- The identity of the agents is not distinguishable

Mechanism $f: \mathbb{R}^{2n} \to \mathbb{R}^2$ is strategyproof if

- truthful reporting is a dominant strategy for every agent
 - For all $i \in [n]$, $d(p_i, f(P)) \le d(p_i, f(P_{-i}, p'_i))$ for all $p'_i \in \mathbb{R}^2$

Coordinatewise Median Mechanism

CM mechanism takes as input the locations $P = \{(x_i, y_i)\}_{i \in [n]}$

- The x-coordinate of the facility : the median of $\{x_i\}_{i \in [n]}$
- The y-coordinate of the facility : the median of $\{y_i\}_{i \in [n]}$
- n is even \rightarrow the smaller of the two medians is returned.

Coordinatewise Median Mechanism

CM mechanism takes as input the locations $P = \{(x_i, y_i)\}_{i \in [n]}$

- The x-coordinate of the facility : the median of $\{x_i\}_{i \in [n]}$
- The y-coordinate of the facility : the median of $\{y_i\}_{i \in [n]}$
- n is even \rightarrow the smaller of the two medians is returned.

CM mechanism : Deterministic & Strategyproof Egalitarian social cost \rightarrow 2-approximation (best) Utilitarian social cost $\rightarrow \sqrt{2}$ -approximation (best)

 $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2 (unknown) \hat{o} : a prediction regarding the optimal facility location o(P)

 $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2 (unknown) \hat{o} : a prediction regarding the optimal facility location o(P) (may be wrong)

ô

- $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2 (unknown)
- \hat{o} : a prediction regarding the optimal facility location o(P) (may be wrong)
- $f(P, \hat{o})$: output solution of a mechanism f
- C: social cost function (ex. egalitarian, utilitarian)

A mechanism f is α -consistent if it achieves α -approximation when $\hat{o} = o(P)$.

$$\max_{P}\left\{\frac{C(f(P, o(P)), P)}{C(o(P), P)}\right\} \le \alpha$$

A mechanism f is β -robust if it achieves β -approximation when \hat{o} can be arbitrarily wrong.

$$\max_{P,\hat{o}} \left\{ \frac{C(f(P,\hat{o}), P)}{C(o(P), P)} \right\} \le \beta$$

 η : the prediction error

$$\eta(\hat{o}, P) = \frac{d(\hat{o}, o(P))}{C(o(P), P)}$$

A mechanism f achieves a $\gamma(\eta)$ -approximation if

$$\max_{P,\hat{o}:\,\eta(\hat{o},P)\leq\eta}\left\{\frac{\mathcal{C}(f(P,\hat{o}),P)}{\mathcal{C}(o(P),P)}\right\}\leq\gamma(\eta)$$

 $\rightarrow \gamma(0)$ -consistent & $\gamma(\infty)$ -robust mechanism

- $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2 (unknown)
- \hat{o} : a prediction regarding the optimal facility location o(P) (may be wrong)
- $f(P, \hat{o})$: output solution of a mechanism f
- C: social cost function

Goal : Find a deterministic, strategyproof, consistent, and robust mechanism.

- with egalitarian social cost
- with utilitarian social cost

Egalitarian social cost : $C^e(f, P) \coloneqq \max_{p \in P} d(f, p)$

Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

```
Input: points (p_1, ..., p_n) \in \mathbb{R}^n, prediction \hat{o} \in \mathbb{R}

if \hat{o} \in [\min_i p_i, \max_i p_i] then

\mid return \hat{o}

else if \hat{o} < \min_i p_i then

\mid return \min_i p_i

else

\mid return \max_i p_i
```

Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

```
Input: points (p_1, ..., p_n) \in \mathbb{R}^n, prediction \hat{o} \in \mathbb{R}

if \hat{o} \in [\min_i p_i, \max_i p_i] then

\mid \text{ return } \hat{o}

else if \hat{o} < \min_i p_i then

\mid \text{ return } \min_i p_i

else

\mid \text{ return } \max_i p_i
```


Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

```
Input: points (p_1, ..., p_n) \in \mathbb{R}^n, prediction \hat{o} \in \mathbb{R}

if \hat{o} \in [\min_i p_i, \max_i p_i] then

| return \hat{o}

else if \hat{o} < \min_i p_i then

| return \min_i p_i

else

| return \max_i p_i
```


Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

```
Input: points (p_1, ..., p_n) \in \mathbb{R}^n, prediction \hat{o} \in \mathbb{R}

if \hat{o} \in [\min_i p_i, \max_i p_i] then

\mid \text{ return } \hat{o}

else if \hat{o} < \min_i p_i then

\mid \text{ return } \min_i p_i

else

\mid \text{ return } \max_i p_i
```

 p_1

 p_3

ô

 p_5

Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

```
Input: points (p_1, ..., p_n) \in \mathbb{R}^n, prediction \hat{o} \in \mathbb{R}

if \hat{o} \in [\min_i p_i, \max_i p_i] then

| return \hat{o}

else if \hat{o} < \min_i p_i then

| return \min_i p_i

else

| return \max_i p_i
```

MinMaxP mechanism

- 1-consistent & 2-robust
- Strategyproof

Mechanism 2: MINIMUM BOUNDING BOX mechanism for egalitarian social cost in two dimensions.

Input: points $((x_1, y_1), \ldots, (x_n, y_n)) \in \mathbb{R}^{2n}$, prediction $(x_{\hat{o}}, y_{\hat{o}}) \in \mathbb{R}^2$ $x_f = MINMAXP((x_1, \ldots, x_n), x_{\hat{o}})$ $y_f = MINMAXP((y_1, \ldots, y_n), y_{\hat{o}})$ **return** (x_f, y_f)

Mechanism 2: MINIMUM BOUNDING BOX mechanism for egalitarian social cost in two dimensions.

Input: points $((x_1, y_1), \dots, (x_n, y_n)) \in \mathbb{R}^{2n}$, prediction $(x_{\hat{o}}, y_{\hat{o}}) \in \mathbb{R}^2$ $x_f = MINMAXP((x_1, \dots, x_n), x_{\hat{o}})$ $y_f = MINMAXP((y_1, \dots, y_n), y_{\hat{o}})$ **return** (x_f, y_f)

Minimum Bounding Box Mechanism

- 1-consistent & $(1+\sqrt{2})$ -robust
- Strategyproof

Minimum Bounding Box Mechanism

- $(1+\sqrt{2})$ -robust

CM Mechanism : 2-approximation \rightarrow 2-consistent & 2-robust

Minimum Bounding Box Mechanism : 1-consistent & $(1+\sqrt{2} = 2.414)$ -robust

Question : Is there exists any middle-ground between these two results? = (less than 2)-consistent & (less than $1 + \sqrt{2}$)-robust?

Theorem : There is no deterministic and strategyproof mechanism that is $(2 - \epsilon)$ -

consistent and $(1 + \sqrt{2} - \epsilon)$ -robust with respect to the egalitarian objective for any $\epsilon > 0$.

Minimum Bounding Box Mechanism with prediction error η

- min $\{1 + \eta, 1 + \sqrt{2}\}$ -approximation

Minimum Bounding Box Mechanism with prediction error η

- min $\{1 + \eta, 1 + \sqrt{2}\}$ -approximation

Utilitarian social cost : $C^u(f, P) \coloneqq \sum_{p \in P} d(f, p)/n$

Coordinatewise Median with Predictions (CMP) mechanism

- c: confidence value in [0,1)
- P': a multiset containing cn copies
- output $f(P, \hat{o}, c) \colon CM(P \cup P')$

n = 5, c = 0.4 p_1 $\rightarrow cn = 2$ $\hat{o} \times 2$ p_2 f (p_3) p_4 p_5

Coordinatewise Median with Predictions (CMP) mechanism

- c: confidence value in [0,1)
- P': a multiset containing cn copies
- output $f(P, \hat{o}, c) : CM(P \cup P')$

-
$$\frac{\sqrt{2c^2+2}}{1+c}$$
 - consistent & $\frac{\sqrt{2c^2+2}}{1-c}$ - robust

Coordinatewise Median with Predictions (CMP) mechanism

 $\mathcal{P}_{coa}(c)$: the class of all instances with prediction \hat{o} and preferred points P such that

- output $f(P, \hat{o}, c) = (0, 0)$
- optimal solution o(P) = (0,1)
- For $p \in P$, p = (0,1) or (x,0) or (-x,0)

 $\mathcal{P}_{coa}^{C}(c)$: the subset of $\mathcal{P}_{coa}(c)$ where $\hat{o} = o(P)$ $\mathcal{P}_{coa}^{R}(c)$: the subset of $\mathcal{P}_{coa}(c)$ where $\hat{o} = (0,0)$ COA = Clusters-and-Opt-on-Axes

Lemma : For any $c \in [0,1)$, the CMP mechanism with confidence c is α -consistent and

$$\beta$$
-robust, where $\alpha = \max_{(P,\hat{o})\in\mathcal{P}_{coa}^{C}(c)} r(P,\hat{o} = o(P),c)$, and $\beta = \max_{(P,\hat{o})\in\mathcal{P}_{coa}^{R}(c)} r(P,\hat{o} = (0,0),c)$.

CA instance : the points are all located at four clusters, one on each half-axis OA instance : the points and the optimal location are all located on axis

Lemma : For any $c \in [0,1)$, the CMP mechanism with confidence c is α -consistent and

$$\beta$$
-robust, where $\alpha = \max_{(P,\hat{o})\in\mathcal{P}_{coa}^{C}(c)} r(P,\hat{o} = o(P),c)$, and $\beta = \max_{(P,\hat{o})\in\mathcal{P}_{coa}^{R}(c)} r(P,\hat{o} = (0,0),c)$.

1. An arbitrary instance \rightarrow either an instance in CA or OA

(without improving the approximation ratio)

2. an instance in CA or OA \rightarrow an instance in COA

(without improving the approximation ratio)

Lemma : The CMP mechanism with parameter $c \in [0,1)$ is $\frac{\sqrt{2c^2+2}}{1+c}$ -consistent and $\frac{\sqrt{2c^2+2}}{1-c}$ -robust for the utilitarian objective.

Lemma : The CMP mechanism with parameter $c \in [0,1)$ is $\frac{\sqrt{2c^2+2}}{1+c}$ -consistent and $\frac{\sqrt{2c^2+2}}{1-c}$ -robust for the utilitarian objective.

consistency maximize \rightarrow the number of agents on (0,1) is maximized $\frac{1-c}{2}n$

Lemma : The CMP mechanism with parameter $c \in [0,1)$ is $\frac{\sqrt{2c^2+2}}{1+c}$ -consistent and $\frac{\sqrt{2c^2+2}}{1-c}$ -robust for the utilitarian objective.

consistency maximize \rightarrow the number of agents on (0,1) is maximized : $\frac{1-c}{2}n$

Lemma : The CMP mechanism with parameter $c \in [0,1)$ is $\frac{\sqrt{2c^2+2}}{1+c}$ -consistent and $\frac{\sqrt{2c^2+2}}{1-c}$ -robust for the utilitarian objective.

robustness maximize \rightarrow the number of agents on (0,1) is maximized $\frac{1+c}{2}n$

Lemma : The CMP mechanism with parameter $c \in [0,1)$ is $\frac{\sqrt{2c^2+2}}{1+c}$ -consistent and $\frac{\sqrt{2c^2+2}}{1-c}$ robust for the utilitarian objective.

robustness maximize \rightarrow the number of agents on (0,1) is maximized : $\frac{1+c}{2}n$

$$\frac{C^{u}(f,P)}{C^{u}(o,P)} = \frac{\frac{1-c}{2}n \cdot x + \frac{1+c}{2}n}{\frac{1-c}{2}n \cdot \sqrt{1+x^{2}}} = \frac{1+c+(1-c)x}{(1-c)\sqrt{1+x^{2}}} \rightarrow \text{maximum on } x = \frac{1-c}{1+c}$$

$$\rightarrow \frac{\sqrt{2c^{2}+2}}{1-c} - \text{robust}$$

$$\hat{o} = f \qquad x = \frac{1-c}{1+c} \qquad 43$$

Lemma : For CMP with confidence $c \in [0,1)$, there exists $(P, \hat{o}) \in \mathcal{P}_{coa}^{C}(c)$ such that

$$r(P, \hat{o} = o(P), c) = \frac{\sqrt{2c^2 + 2}}{1 + c}$$
, and $(Q, \hat{o}) \in \mathcal{P}_{coa}^R(c)$ such that $r(Q, \hat{o} = (0, 0), c) = \frac{\sqrt{2c^2 + 2}}{1 - c}$.

Lemma : For CMP with confidence $c \in [0,1)$, there exists $(P, \hat{o}) \in \mathcal{P}_{coa}^{C}(c)$ such that

$$r(P, \hat{o} = o(P), c) = \frac{\sqrt{2c^2 + 2}}{1 + c}$$
, and $(Q, \hat{o}) \in \mathcal{P}_{coa}^R(c)$ such that $r(Q, \hat{o} = (0, 0), c) = \frac{\sqrt{2c^2 + 2}}{1 - c}$.

$$C^{u}(o(P), P) = \frac{1+c}{2} \sqrt{1 + \left(\frac{1+c}{1-c}\right)^{2}}, C^{u}(f, P) = \frac{1+c}{2} \cdot \frac{1+c}{1-c} + \frac{1-c}{2}$$
$$\to r(P, \hat{o} = o(P), c) = \frac{\sqrt{2c^{2}+2}}{1+c}$$

Lemma : For CMP with confidence $c \in [0,1)$, there exists $(P, \hat{o}) \in \mathcal{P}_{coa}^{C}(c)$ such that

$$r(P, \hat{o} = o(P), c) = \frac{\sqrt{2c^2 + 2}}{1 + c}$$
, and $(Q, \hat{o}) \in \mathcal{P}_{coa}^R(c)$ such that $r(Q, \hat{o} = (0, 0), c) = \frac{\sqrt{2c^2 + 2}}{1 - c}$.

$$C^{u}(o(Q),Q) = \frac{1-c}{2} \sqrt{1 + \left(\frac{1-c}{1+c}\right)^{2}}, C^{u}(f,Q) = \frac{1-c}{2} \cdot \frac{1-c}{1+c} + \frac{1+c}{2}$$

$$\rightarrow r(Q,\hat{o} = (0,0),c) = \frac{\sqrt{2c^{2}+2}}{1-c} \times \frac{1-c}{4} n$$

Theorem: For any deterministic and strategyproof mechanism that guarantees a

consistency of $\frac{\sqrt{2c^2+2}}{1+c}$, for some constant $c \in (0,1)$, its robustness is no better than $\frac{\sqrt{2c^2+2}}{1-c}$ for the utilitarian objective.

Theorem : The CMP mechanism with parameter $c \in [0,1)$ achieves a

 $\min\left\{\frac{\sqrt{2c^2+2}}{1+c} + \eta, \frac{\sqrt{2c^2+2}}{1-c}\right\} - \text{approximation, where } \eta \text{ is the prediction error, for the utilitarian objective.}$