Learning-Augmented Mechanism Design

연세대학교 이국렬

Single Facility Location

 $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2 Goal : choose a location $f \in \mathbb{R}^2$ for a facility to minimize the social cost

Single Facility Location

 $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2

Goal : choose a location $f \in \mathbb{R}^2$ for a facility to minimize the social cost

Each agent *i* suffers a cost $d(f, p_i)$

Single Facility Location

 $P = \{p_1, \dots, p_n\}$: a set of preferred locations for the *n* agents in \mathbb{R}^2

Goal : choose a location $f \in \mathbb{R}^2$ for a facility to minimize the social cost

- Each agent *i* suffers a cost $d(f, p_i)$
- Egalitarian social cost: max $\max\limits_{p\in P}d(f,p)$, Utilitarian social cost : $\sum_{p\in P}d(f,p)$ / n

- $P = \{p_1, \cdots, p_n\}$: a set of preferred locations for the n agents in \mathbb{R}^2 (unknown)
- A mechanism needs to ask the agents to report their preferred locations

 $P = \{p_1, \cdots, p_n\}$: a set of preferred locations for the n agents in \mathbb{R}^2 (unknown)

- A mechanism needs to ask the agents to report their preferred locations
- Each agent wants to reduce $d(f, p_i) \rightarrow$ misreport his preferred location

 $P = \{p_1, \cdots, p_n\}$: a set of preferred locations for the n agents in \mathbb{R}^2 (unknown)

- A mechanism needs to ask the agents to report their preferred locations
- Each agent wants to reduce $d(f, p_i) \rightarrow$ misreport his preferred location
- The identity of the agents is not distinguishable

Mechanism $f: \mathbb{R}^{2n} \to \mathbb{R}^2$ is **strategyproof** if

- truthful reporting is a dominant strategy for every agent
	- For all $i \in [n]$, $d(p_i, f(P)) \leq d(p_i, f(P_{-i}, p'_i))$ for all $p'_i \in \mathbb{R}^2$

Coordinatewise Median Mechanism

CM mechanism takes as input the locations $P = \{(x_i, y_i)\}_{i \in [n]}$

- The x-coordinate of the facility : the median of $\{x_i\}_{i\in[n]}$
- The y-coordinate of the facility : the median of $\{y_i\}_{i\in[n]}$
- n is even \rightarrow the smaller of the two medians is returned.

Coordinatewise Median Mechanism

CM mechanism takes as input the locations $P = \{(x_i, y_i)\}_{i \in [n]}$

- The x-coordinate of the facility : the median of $\{x_i\}_{i\in[n]}$
- The y-coordinate of the facility : the median of $\{y_i\}_{i\in[n]}$
- n is even \rightarrow the smaller of the two medians is returned.

CM mechanism : Deterministic & Strategyproof Egalitarian social cost \rightarrow 2-approximation (best) Utilitarian social cost $\rightarrow \sqrt{2}$ -approximation (best)

 $P = \{p_1, \cdots, p_n\}$: a set of preferred locations for the n agents in \mathbb{R}^2 (unknown)

 \hat{o} : a prediction regarding the optimal facility location $o(P)$

 $P = \{p_1, \cdots, p_n\}$: a set of preferred locations for the n agents in \mathbb{R}^2 (unknown) \hat{o} : a prediction regarding the optimal facility location $o(P)$ (may be wrong)

 \hat{a}

- $P = \{p_1, \cdots, p_n\}$: a set of preferred locations for the n agents in \mathbb{R}^2 (unknown)
- \hat{o} : a prediction regarding the optimal facility location $o(P)$ (may be wrong)
- $f(P,\hat{\mathfrak{o}})$: output solution of a mechanism f
- c : social cost function (ex. egalitarian, utilitarian)

A mechanism f is α **-consistent** if it achieves α -approximation when $\hat{\mathbf{o}} = \mathbf{o}(\mathbf{P})$.

$$
\max_{P} \left\{ \frac{C(f(P, o(P)), P)}{C(o(P), P)} \right\} \le \alpha
$$

A mechanism f is β **-robust** if it achieves β -approximation when $\hat{\boldsymbol{\sigma}}$ can be arbitrarily wrong.

$$
\max_{P,\hat{\delta}} \left\{ \frac{C(f(P,\hat{\delta}), P)}{C(o(P), P)} \right\} \leq \beta
$$

 η : the prediction error

$$
\eta(\hat{o}, P) = \frac{d(\hat{o}, o(P))}{C(o(P), P)}
$$

A mechanism f achieves a $\gamma(\eta)$ -approximation if

$$
\max_{P,\hat{o} \,:\, \eta(\hat{o}, P) \le \eta} \left\{ \frac{C(f(P,\hat{o}), P)}{C(o(P), P)} \right\} \le \gamma(\eta)
$$

 $\rightarrow \gamma(0)$ -consistent & $\gamma(\infty)$ -robust mechanism

- $P = \{p_1, \cdots, p_n\}$: a set of preferred locations for the n agents in \mathbb{R}^2 (unknown)
- \hat{o} : a prediction regarding the optimal facility location $o(P)$ (may be wrong)
- $f(P,\hat{o})$: output solution of a mechanism f
- : social cost function
- Goal : Find a deterministic, strategyproof, consistent, and robust mechanism.
- with egalitarian social cost
- with utilitarian social cost

Egalitarian social cost : $C^e(f, P) \coloneqq \max$ $p \in P$ $d(f,p)$

Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

```
Input: points (p_1, \ldots, p_n) \in \mathbb{R}^n, prediction \hat{o} \in \mathbb{R}if \hat{o} \in [\min_i p_i, \max_i p_i] then
return \hat{o}else if \hat{o} < \min_i p_i then
 return \min_i p_ielse
 return max<sub>i</sub> p_i
```
Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

```
Input: points (p_1, \ldots, p_n) \in \mathbb{R}^n, prediction \hat{o} \in \mathbb{R}if \hat{o} \in [\min_i p_i, \max_i p_i] then
 return \hat{o}else if \hat{o} < \min_i p_i then
 return \min_i p_ielse
 return max<sub>i</sub> p_i
```


Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

```
Input: points (p_1, \ldots, p_n) \in \mathbb{R}^n, prediction \hat{o} \in \mathbb{R}if \hat{o} \in [\min_i p_i, \max_i p_i] then
 return \hat{o}else if \hat{o} < \min_i p_i then
 return \min_i p_ielse
 return max<sub>i</sub> p_i
```


Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

 $\left(\begin{array}{ccc} p_1 \end{array} \right)$ $\left(\begin{array}{ccc} p_1 \end{array} \right)$ $\left(\begin{array}{ccc} p_2 \end{array} \right)$ $\left(\begin{array}{ccc} p_5 \end{array} \right)$

```
Input: points (p_1, \ldots, p_n) \in \mathbb{R}^n, prediction \hat{o} \in \mathbb{R}if \hat{o} \in [\min_i p_i, \max_i p_i] then
 return \hat{o}else if \hat{o} < \min_i p_i then
 return \min_i p_ielse
 return max<sub>i</sub> p_i
```
 f $\hat{0}$

Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

```
Input: points (p_1, \ldots, p_n) \in \mathbb{R}^n, prediction \hat{o} \in \mathbb{R}if \hat{o} \in [\min_i p_i, \max_i p_i] then
 return \hat{o}else if \hat{o} < \min_i p_i then
 return \min_i p_ielse
 return max<sub>i</sub> p_i
```
MinMaxP mechanism

- 1-consistent & 2-robust
- Strategyproof

Mechanism 2: MINIMUM BOUNDING BOX mechanism for egalitarian social cost in two dimensions.

Input: points $((x_1, y_1), ..., (x_n, y_n)) \in \mathbb{R}^{2n}$, prediction $(x_0, y_0) \in \mathbb{R}^2$ $x_f = \text{MINMAXP}((x_1, ..., x_n), x_{\hat{o}})$ $y_f = \text{MINMaxP}((y_1, \ldots, y_n), y_0)$ return (x_f, y_f)

Mechanism 2: MINIMUM BOUNDING BOX mechanism for egalitarian social cost in two dimensions.

Input: points $((x_1, y_1), ..., (x_n, y_n)) \in \mathbb{R}^{2n}$, prediction $(x_{\hat{o}}, y_{\hat{o}}) \in \mathbb{R}^2$ $x_f = MINMAXP((x_1, ..., x_n), x_{\hat{o}})$ $y_f = \text{MINMaxP}((y_1, \ldots, y_n), y_{\hat{o}})$ **return** (x_f, y_f)

Minimum Bounding Box Mechanism

- 1-consistent & $(1+\sqrt{2})$ -robust
- Strategyproof

Minimum Bounding Box Mechanism

 $(1+\sqrt{2})$ -robust

CM Mechanism : 2-approximation \rightarrow 2-consistent & 2-robust

Minimum Bounding Box Mechanism : 1-consistent & $(1+\sqrt{2}) = 2.414$ -robust

Question : Is there exists any middle-ground between these two results? = (less than 2)-consistent & (less than $1 + \sqrt{2}$)-robust?

Theorem : There is no deterministic and strategyproof mechanism that is $(2 - \epsilon)$ -

consistent and $(1 + \sqrt{2} - \epsilon)$ -robust with respect to the egalitarian objective for any $\epsilon > 0$.

Minimum Bounding Box Mechanism with prediction error η

- min $\{1 + \eta, 1 + \sqrt{2}\}$ -approximation

Minimum Bounding Box Mechanism with prediction error η

- min $\{1 + \eta, 1 + \sqrt{2}\}$ -approximation

Utilitarian social cost : $C^u(f, P) \coloneqq \sum_{p \in P} d(f, p) / n$

Coordinatewise Median with Predictions (CMP) mechanism

- \cdot \cdot \cdot c \cdot confidence value in [0,1)
- P' : a multiset containing cn copies
- output $f(P, \hat{o}, c)$: $CM(P \cup P'$

 $n = 5, c = 0.4$ \rightarrow cn = 2 p_1 p_2 $, p_3)$ p_{4} \mathbf{f} $\hat{0}$ \times 2 p_5

Coordinatewise Median with Predictions (CMP) mechanism

- \cdot \cdot \cdot c \cdot confidence value in [0,1)
- P' : a multiset containing *cn* copies
- output $f(P, \hat{o}, c)$: $CM(P \cup P'$

$$
-\frac{\sqrt{2c^2+2}}{1+c}
$$
 consistent & $\frac{\sqrt{2c^2+2}}{1-c}$ - robust

Coordinatewise Median with Predictions (CMP) mechanism

 $\mathcal{P}_{coa}(c)$: the class of all instances with prediction \hat{o} and preferred points P such that

- output $f(P, \hat{o}, c) = (0,0)$
- optimal solution $o(P) = (0,1)$
- For $p \in P$, $p = (0,1)$ or $(x, 0)$ or $(-x, 0)$

 $\mathcal{P}^{\mathcal{C}}_{coa}(c)$: the subset of $\mathcal{P}_{coa}(c)$ where $\widehat{o} = o(P)$ $\mathcal{P}^{R}_{coa}(c)$: the subset of $\mathcal{P}_{coa}(c)$ where $\widehat{o} = (0,0)$ COA = **C**lusters-and-**O**pt-on-**A**xes

Lemma : For any $c \in [0,1)$, the CMP mechanism with confidence c is α -consistent and

 β -robust, where $\alpha =$ max $(P,\hat{o}) \in \mathcal{P}_{coa}^C(c)$ $r(P, \hat{o} = o(P), c)$, and $\beta = \max$ $(P,\hat{o}) \in \mathcal{P}_{coa}^{R}(c)$ $r(P, \hat{o} = (0,0), c)$.

CA instance : the points are all located at four clusters, one on each half-axis OA instance : the points and the optimal location are all located on axis

Lemma : For any $c \in [0,1)$, the CMP mechanism with confidence c is α -consistent and

$$
\beta
$$
-robust, where $\alpha = \max_{(P,\hat{o}) \in \mathcal{P}_{coa}^C(c)} r(P, \hat{o} = o(P), c)$, and $\beta = \max_{(P,\hat{o}) \in \mathcal{P}_{coa}^R(c)} r(P, \hat{o} = (0,0), c)$.

1. An arbitrary instance \rightarrow either an instance in CA or OA

(without improving the approximation ratio)

2. an instance in CA or $OA \rightarrow an$ instance in COA

(without improving the approximation ratio)

Lemma: The CMP mechanism with parameter $c \in [0,1)$ is $\frac{\sqrt{2c^2+2}}{4+c^2}$ $\frac{2c^2+2}{1+c}$ -consistent and $\frac{\sqrt{2c^2+2}}{1-c}$ $\frac{2c - \pm 2}{1 - c}$ robust for the utilitarian objective.

Lemma: The CMP mechanism with parameter $c \in [0,1)$ is $\frac{\sqrt{2c^2+2}}{4+c^2}$ $\frac{2c^2+2}{1+c}$ -consistent and $\frac{\sqrt{2c^2+2}}{1-c}$ $\frac{2c - \pm 2}{1 - c}$ robust for the utilitarian objective.

consistency maximize \rightarrow the number of agents on (0,1) is maximized $:\frac{1-c}{2}n$

Lemma: The CMP mechanism with parameter $c \in [0,1)$ is $\frac{\sqrt{2c^2+2}}{4+c^2}$ $\frac{2c^2+2}{1+c}$ -consistent and $\frac{\sqrt{2c^2+2}}{1-c}$ $\frac{2c - \pm 2}{1 - c}$ robust for the utilitarian objective.

consistency maximize \rightarrow the number of agents on (0,1) is maximized $:\frac{1-c}{2}n$

$$
\frac{C^{u}(f,P)}{C^{u}(o,P)} = \frac{\frac{1+c}{2}n \cdot x + \frac{1-c}{2}n}{\frac{1+c}{2}n \cdot \sqrt{1+x^{2}}} = \frac{1-c+(1+c)x}{(1+c)\sqrt{1+x^{2}}} \rightarrow \text{maximum on } x = \frac{1+c}{1-c}
$$
\n
$$
\hat{o} = o \quad \text{or} \quad \frac{\hat{o}}{\hat{o}} = \frac{1-c}{2}n
$$
\n
$$
\rightarrow \frac{\sqrt{2c^{2}+2}}{1+c}
$$
\n
$$
\rightarrow \frac{\sqrt{2c^{2}+2}}{1-c}
$$
\n
$$
x = \frac{1+c}{1-c}
$$

Lemma: The CMP mechanism with parameter $c \in [0,1)$ is $\frac{\sqrt{2c^2+2}}{4+c^2}$ $\frac{2c^2+2}{1+c}$ -consistent and $\frac{\sqrt{2c^2+2}}{1-c}$ $\frac{2c - \pm 2}{1 - c}$ robust for the utilitarian objective.

robustness maximize \rightarrow the number of agents on (0,1) is maximized $\pm\frac{1+c}{2}n$

Lemma: The CMP mechanism with parameter $c \in [0,1)$ is $\frac{\sqrt{2c^2+2}}{4+c^2}$ $\frac{2c^2+2}{1+c}$ -consistent and $\frac{\sqrt{2c^2+2}}{1-c}$ $\frac{2c - \pm 2}{1 - c}$ robust for the utilitarian objective.

robustness maximize \rightarrow the number of agents on (0,1) is maximized $\pm\frac{1+c}{2}n$

$$
\frac{C^u(f,P)}{C^u(o,P)} = \frac{\frac{1-c}{2}n \cdot x + \frac{1+c}{2}n}{\frac{1-c}{2}n \cdot \sqrt{1+x^2}} = \frac{1+c+(1-c)x}{(1-c)\sqrt{1+x^2}} \to \text{maximum on } x = \frac{1-c}{1+c}
$$
\n
$$
\Rightarrow \frac{\sqrt{2c^2+2}}{1-c} \text{ - robust}
$$
\n
$$
\hat{o} = f \qquad x = \frac{1-c}{1+c} \qquad \text{as}
$$

 $1 + c$

п

Lemma : For CMP with confidence $c \in [0,1)$, there exists $(P, \hat{o}) \in \mathcal{P}_{coa}^{C}(c)$ such that

$$
r(P, \hat{o} = o(P), c) = \frac{\sqrt{2c^2 + 2}}{1 + c}
$$
, and $(Q, \hat{o}) \in \mathcal{P}_{coa}^R(c)$ such that $r(Q, \hat{o} = (0,0), c) = \frac{\sqrt{2c^2 + 2}}{1 - c}$.

Lemma : For CMP with confidence $c \in [0,1)$, there exists $(P, \hat{o}) \in \mathcal{P}_{coa}^{C}(c)$ such that

$$
r(P, \hat{o} = o(P), c) = \frac{\sqrt{2c^2 + 2}}{1 + c}
$$
, and $(Q, \hat{o}) \in \mathcal{P}_{coa}^R(c)$ such that $r(Q, \hat{o} = (0,0), c) = \frac{\sqrt{2c^2 + 2}}{1 - c}$.

$$
C^{u}(o(P), P) = \frac{1+c}{2} \sqrt{1 + \left(\frac{1+c}{1-c}\right)^{2}}, \ C^{u}(f, P) = \frac{1+c}{2} \cdot \frac{1+c}{1-c} + \frac{1-c}{2}
$$

\n
$$
\rightarrow r(P, \hat{o} = o(P), c) = \frac{\sqrt{2c^{2}+2}}{1+c}
$$

Lemma : For CMP with confidence $c \in [0,1)$, there exists $(P, \hat{o}) \in \mathcal{P}_{coa}^{C}(c)$ such that

$$
r(P, \hat{o} = o(P), c) = \frac{\sqrt{2c^2 + 2}}{1 + c}
$$
, and $(Q, \hat{o}) \in \mathcal{P}_{coa}^R(c)$ such that $r(Q, \hat{o} = (0,0), c) = \frac{\sqrt{2c^2 + 2}}{1 - c}$.

$$
C^{u}(o(Q), Q) = \frac{1-c}{2} \sqrt{1 + \left(\frac{1-c}{1+c}\right)^{2}}, C^{u}(f, Q) = \frac{1-c}{2} \cdot \frac{1-c}{1+c} + \frac{1+c}{2}
$$
\n
$$
\rightarrow r(Q, \hat{o} = (0, 0), c) = \frac{\sqrt{2c^{2}+2}}{1-c}
$$
\n
$$
\times \frac{1-c}{4} n
$$
\n
$$
\rightarrow \frac{1-c}{4} n
$$

46

 \boldsymbol{n}

 $x =$

 $1 + c$

Theorem : For any deterministic and strategyproof mechanism that guarantees a

consistency of $\frac{\sqrt{2c^2+2}}{4+c}$ $\frac{2c^2+2}{1+c}$, for some constant $c \in (0,1)$, its robustness is no better than $\frac{\sqrt{2c^2+2}}{1-c}$ $1-c$ for the utilitarian objective.

Theorem : The CMP mechanism with parameter $c \in [0,1)$ achieves a

 $\min \left\{\frac{\sqrt{2c^2+2}}{1+c}\right\}$ $\frac{2c^2+2}{1+c}$ + η , $\frac{\sqrt{2c^2+2}}{1-c}$ $\frac{2c-+2}{1-c}$ - approximation, where η is the prediction error, for the utilitarian objective.