Fixed-price approximations in bilateral trade

Sunghyeon Jo

Seoul National University

June 11, 2023

メロメメ 御 メメ きょく きょう

ミー 2990

Table Of Contents

- **1** Definition and Intro of Bilateral Trade: Myerson–Satterthwaite theorem
- ² Result of this paper: Welfare approximation for various cases of bilateral trade
- **3** Further works: Results of the recent studies

 $A\oplus A\oplus A\oplus A\oplus A\oplus A$

4 000 100

 \equiv Ω

Bilateral Trade

Bilateral Trade

- Two agents: a buyer and a seller
- buyer's valuation $B \sim F_B$, seller's valuation $S \sim F_S$

Bilateral Trade Mechanisms

• Allocation function $A : \mathbb{R} \times \mathbb{R} \to \{0,1\}$. $A(r,s) = 1$ if a transaction should occur, 0 otherwise.

KED KAP KED KED E VAR

• Payment function $\Pi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ If a trade occurs, it determines the price.

We measure the performance of a mechanism by two values:

- \bullet Gains from trade(GFT): $B S$ wherever trade occurs and 0 otherwise.
- \bullet welfare: B if trade occurs, S otherwise.

Note that (welfare) - (GFT) = S always holds. The "first-best" optimum is considered to be $\max(B, S)$ for welfare, and $\max(B - S, 0)$ for GFT.

∢ 何 ゝ ∢ ヨ ゝ ∢ ヨ ゝ …

GB 11 QQ

Theorem(Myerson and Satterthwaite)

No individually rational Bayesian incentive-compatible (BIC) mechanism attains the first-best optimum in general.

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

∍

 Ω

We'll use notation used in paper of Myerson and Satterthwaite for describing their results.

Bilateral Trading Problem

- individual 1 owns an object, individual 2 wants to buy.
- Each individual's valuation is V_1 , V_2 (= S, B).
- V_i is distributed over a given interval $\left[a_i,b_i\right]$
- density function f_i for V_i is continuous and positive on $\left[a_i,b_i\right]$
- \bullet F_i be cumulative distribution functions corresponding to f_i $(F_1 = F_S, F_2 = F_B)$
- **e** each individual knows her own valuation, but she considers the other's valuation as a random variable. That is, individual 1 knows V_1 and F_2 .

◆ ロ ▶ → 何 ▶ → ヨ ▶ → ヨ ▶ │ ヨ │

 Ω

Direct bargaining mechanism

- Each individual simultaneously reports her valuation.
- Direct mechanism is characterized by two outcome functions p, x .
- $p(v_1, v_2)$: the probability that the trade occurs when reported valuation are $v_1, v_2 (= A(s, b))$
- $x(v_1, v_2)$: the expected payment from buyer to seller when reported valuation are v_1, v_2 (= $\Pi(s, b)$)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 → の Q ⊙

A direct mechanism is Bayesian incentive-compatible(BIC) if honest reporting forms a Bayesian Nash equilibrium. That is, in an incentive-compatible mechanism, each individual can maximize his expected utility by reporting his true valuation, given that the other is expected to report honestly.

Revelation principle

For any Bayesian equilibrium of any bargaining game, there is an equivalent incentive-compatible direct mechanism that always yields the same outcome.

Therefore, without any loss of generality, we can restrict our attention to incentive-compatible direct mechanisms.

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ..

E. Ω We'll consider direct mechanisms satisfies following conditions:

Requirements

 \bullet Individual Rationality(IR): each individual's expected gain should be nonnegative.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 → の Q ⊙

• Bayesian Incentive Compatibility(BIC)

Define following quantities:

Definition

•
$$
\bar{x_1}(v_1) = \int_{a_2}^{b_2} x(v_1, t_2) f_2(t_2) dt_2, \ \bar{x_2}(v_2) = \int_{a_1}^{b_1} x(t_1, v_2) f_1(t_1) dt_1
$$

•
$$
\bar{p}_1(v_1) = \int_{a_2}^{b_2} p(v_1, t_2) f_2(t_2) dt_2, \ \bar{p}_2(v_2) = \int_{a_1}^{b_1} p(t_1, v_2) f_1(t_1) dt_1
$$

•
$$
U_1(v_1) = \bar{x_1}(v_1) - v_1\bar{p_1}(v_1), U_2(v_2) = v_2\bar{p_2}(v_2) - \bar{x_2}(v_2)
$$

 $U_1(v_1)$: expected gains from trade for seller if her valuation is v_1 $U_2(v_2)$: expected gains from trade for buyer if her valuation is v_2 .

IR: $U_1(v_1) > 0, U_2(v_2) > 0$ for all v_1, v_2 BIC: $U_1(v_1) \geq \bar{x_1}(\hat{v_1}) - v_1 \bar{p_1}(\hat{v_1})$, $U_2(v_2) \geq v_2 \bar{p_2}(\hat{v_2}) - \bar{x_2}(\hat{v_2})$ for true valuation v_i and arbitrary $\hat{v_i}.$

KED KAP KED KED E VAR

Lemma

For any BIC mechanism, $U_1(b_1) = \min_{v_1} U_1(v_1)$, $U_2(a_2) = \min_{v_2} U_2(v_2)$

Proof. For every two possible valuation $v_1, \hat{v_1}$ for seller, $U_1(v_1) = \bar{x_1}(v_1) - v_1\bar{v_1}(v_1) \geq \bar{x_1}(\hat{v_1}) - v_1\bar{v_1}(\hat{v_1})$ $U_1(\hat{v_1}) = \bar{x_1}(\hat{v_1}) - \hat{v_1}\bar{v_1}(\hat{v_1}) > \bar{x_1}(v_1) - \hat{v_1}\bar{v_1}(v_1)$ Therefore, $(\hat{v}_1 - v_1)\bar{p}_1(v_1) > U_1(v_1) - U_1(\hat{v}_1) > (\hat{v}_1 - v_1)\bar{p}_1(\hat{v}_1)$.

> From this, $\bar{p_1}$ is decreasing and $U_1'(v_1) = -\bar{p_1}(v_1)$ that $U_1(v_1)=U_1(b_1)+\int_{v_1}^{b_1}\bar{p_1}(t_1)dt_1$ is decreasing. Similarly, $U_2(v_1) = U_2(a_2) + \int_{a_2}^{\dot{v}_2} \bar{p_2}(t_2) dt_2$ is increasing.

Therefore, $U_1(b_1) = \min_{v_1} U_1(v_1)$ and $U_2(a_2) = \min_{v_2} U_2(v_2)$.

KED KAP KED KED E VAR

Following lemma holds:

Lemma

For any BIC mechanism,

$$
U_1(b_1) + U_2(a_2) = \min_{v_1} U_1(v_1) + \min_{v_2} U_2(v_2) =
$$

 $\int_{a_2}^{b_2} \int_{a_1}^{b_1} [f_1(v_1)(v_2f_2(v_2) - (1 - F_2(v_2)) - f_2(v_2)(v_1f_1(v_1) - F_1(v_1))]$ $\cdot p(v_1, v_2)dv_1dv_2$.

It needs some calculation to derive above lemma. This lemma shows that $U_1(b_1)+U_2(a_2)$ depends only on F_i and p_i , not $x_i.$

KED KAP KED KED E VAA

Ex post efficiency

A mechanism (p, x) is ex post efficient if and only if $p(v_1, v_2) = 1$ if $v_1 < v_2$, $p(v_1, v_2) = 0$ if $v_2 > v_1$

An ex post efficient mechanism attains the first-best optimum, and $\bar{p}_1(v_1) = 1 - F_2(v_1), \bar{p}_2(v_2) = F_1(v_2)$ holds.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 → の Q ⊙

Assume that $\max(a_1, a_2) < \min(b_1, b_2)$. That is, two individuals' valuation domain intersects. For an ex-post efficient mechanism,

 $U_1(b_1) + U_2(a_2) =$

 $\int_{a_2}^{b_2} \int_{a_1}^{b_1} [f_1(v_1)(v_2f_2(v_2) - (1 - F_2(v_2)) - f_2(v_2)(v_1f_1(v_1) - F_1(v_1))]$ $\cdot p(v_1, v_2)dv_1dv_2$

$$
=-\int_{a_2}^{b_1}(1-F_2(t))F_1(t)dt<0
$$

So it cannot be individually rational, and the theorem is now proved:

Myerson-Satterthwaite theorem

if (a_1, b_1) and (a_2, b_2) intersects, then no Bayesian incentive-compatible individually rational mechanism can be ex post efficient.

K ロ ▶ K 個 ▶ K 필 ▶ K 필 ▶ - 필 - K 9 Q Q

Bilateral Trade

Now, return to the original paper.

We are interested in only incentive-compatible mechanisms (it is enough because of the revelation principle)

Incentive Compatiblity

- Bayesian incentive compatibility(BIC): Reporting true values should be an optimal strategy for each agent, in expectation.
- Dominant-strategy incentive compatibility(DSIC): Reporting true values is always an optimal strategy for all agents.

So, DSIC mechanisms are Bayesian incentive compatible, but converse does not hold.

イロト イ押 トイヨ トイヨ トーヨー

 Ω

For this paper, our consideration will be exclusively on mechanisms that satisfies DSIC and IR.

Since DSIC mechanisms are BIC mechanisms, so there is no IR DSIC mechanism attains first-best optimum.

Our goal: make DSIC mechanism that welfare and gain for trade close to optimum as possible.

K ロ ▶ K 個 ▶ K 필 ▶ K 필 ▶ - 필 - K 9 Q Q

Results

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ 約 9 (9)

Fixed-price Mechanisms

By definition, DSIC mechanisms satisfy the following:

- $\Pi(s, b) s \cdot A(s, b) \ge \Pi(s', b) s \cdot A(s', b)$
- $b \cdot A(s, b) \Pi(s, b) \ge b \cdot A(s, b') \Pi(s, b')$

Theorem

DSIC mechanisms for bilateral trade are essentially fixed-price **mechanisms**, where the Π is a single value p that is only related to F_S and F_B , not valuations. And $A(b, s) = 1_{s \le p \le b}$, trade occurs if and only if $s \leq p \leq b$.

イロト イ何 トイヨ トイヨ トーヨー

 Ω

GFT and Welfare for symmetric case

Consider only symmetric case: $F = F_B = F_S$.

For a fixed-price mechanism with price p ,

- \bullet Optimal gains from trade OPT- $GFT(F) = \mathbb{E}[1_{B>S}(B-S)]$
- Gains from trade $GFT(p, F) = \mathbb{E}[1_{B>n>S}(B-S)]$
- **•** Optimal welfare $\mathsf{OPT-W}(F) = \mathbb{E}[S] + \mathbb{E}[\mathbf{1}_{B>S}(B-S)] = \mathbb{E}[S] + \mathsf{OPT}\text{-}\mathsf{GFT}(F)$

KED KAP KED KED E NAA

• welfare $W(p, F) = \mathbb{E}[S] + GFT(p, F)$

GFT value for symmetric case

Let f be density function of F . Then following holds:

$$
OPT-GFT(F) = \mathbb{E}[\mathbf{1}_{B>S}(B-S)]
$$

\n
$$
= \int_0^\infty \mathbf{1}_{S \le x < B} dx
$$

\n
$$
= \int_0^\infty F(x)(1 - F(x)) dx
$$

\n
$$
GFT(p, F) = \mathbb{E}[\mathbf{1}_{B \ge p>S}(B-S)]
$$

\n
$$
= \mathbb{E}[\mathbf{1}_{B \ge p>S}(B-p)] + \mathbb{E}[\mathbf{1}_{B \ge p>S}(p-S)]
$$

\n
$$
= \mathbb{E}[\mathbf{1}_{B \ge p}(B-p)]Pr(S < p) + \mathbb{E}[\mathbf{1}_{p>S}(p-S)]Pr(B \ge p)
$$

\n
$$
= F(p) \int_p^\infty (1 - F(x)) dx + (1 - F(p)) \int_0^p F(x) dx
$$

Þ

医单侧 医单侧

 \leftarrow \Box

 2990

Single Sample Approximation

Theorem

The symmetric bilateral trade mechanism which under a valuation distribution F posts a price $p \sim F$ achieves exactly 1/2 of the OPT-GFT.

Proof.
$$
\mathbb{E}_{p\sim F}[GFT(p, F)]
$$

\n
$$
= \int_0^\infty \left[F(p) \int_p^\infty (1 - F(x)) dx + (1 - F(p)) \int_0^p F(x) dx \right] f(p) dp
$$

\nLet $\gamma_1 = \int_0^\infty f(p) F(p) \int_p^\infty (1 - F(x)) dx dp$,
\n
$$
\gamma_2 = \int_0^\infty f(p) (1 - F(p)) \int_0^p F(x) dx dp
$$
,
\nthen $\mathbb{E}_{p\sim F}[GFT(p, F)] = \gamma_1 + \gamma_2$ holds.

$$
\therefore \mathbb{E}_{p \sim F}[GFT(p, F)] = \gamma_1 + \gamma_2 = \frac{1}{2} \int_0^{\infty} F(x)(1 - F(x))dx
$$

イロト イ何 トイヨ トイヨ トーヨー

 Ω

which is OPT-GFT $(F)/2$.

Single Sample Approximation

Theorem

The symmetric bilateral trade mechanism which under a valuation distribution F posts a price $p \sim F$ achieves exactly 1/2 of the OPT-GFT.

Proof.
\n
$$
\gamma_1 = \int_0^\infty f(p) F(p) \int_p^\infty (1 - F(x)) dx dp
$$
\n
$$
= \frac{1}{2} \int_0^\infty F(p)^2 (1 - F(p)) dp \text{ (some calculations are omitted)}
$$
\n
$$
\gamma_2 = \int_0^\infty f(p) (1 - F(p)) \int_0^p F(x) dx dp
$$
\n
$$
= \frac{1}{2} \int_0^\infty F(p) (1 - F(p))^2 dp
$$
\n
$$
\therefore \mathbb{E}_{p \sim F} [GFT(p, F)] = \gamma_1 + \gamma_2 = \frac{1}{2} \int_0^\infty F(x) (1 - F(x)) dx
$$

 299

∍

∢ ロ ▶ (何) (ミ) (ミ) (

which is OPT-GFT $(F)/2$.

Single Sample Approximation

Theorem

The symmetric bilateral trade mechanism which under a valuation distribution F posts a price $p \sim F$ achieves a 3/4-approximation of the optimal welfare.

Proof.
\n
$$
\frac{\mathbb{E}_{p\sim F}[GFT(p, F)]}{\text{OPT-W}(F)} = \frac{\mu + \mathbb{E}_{p\sim F}[GFT(p, F)]}{\mu + \text{OPT-GFT}(F)}
$$
\n
$$
= \frac{\mu + \text{OPT-GFT}(F)/2}{\mu + \text{OPT-GFT}(F)}
$$

On the other hand,

$$
OPT - GFT(F) = \int_0^\infty F(x)(1 - F(x))dx \le \int_0^\infty 1 \cdot (1 - F(x))dx
$$

イロト イ押 トイヨ トイヨ トー

(B) 2990

$$
= \int_0^\infty Pr[t \ge x]_{t \sim F} = \mu.
$$

$$
\therefore \frac{\mathbb{E}_{p \sim F}[GFT(p, F)]}{\text{OPT-W}(F)} \ge \frac{3}{4}
$$

Assume F is known, find best possible p for maximizing welfare.

Theorem $p = \mu$ is optimal. That is, $p^* = \mathbb{E}[S] = \mathbb{E}[B]$

Proof.
\n
$$
W(p, F) = \mathbb{E}[S] + \mathbb{E}[\mathbf{1}_{B \ge p> S}(B - S)]
$$
\n
$$
= \mathbb{E}[S] + \mathbb{E}[B \cdot \mathbf{1}_{B > p}] \cdot F(p) - \mathbb{E}[S \cdot \mathbf{1}_{S \le p}](1 - F(p))
$$
\n
$$
= \mathbb{E}[S] + (\mathbb{E}[S] - \mathbb{E}[S \cdot \mathbf{1}_{S \le p}]) \cdot F(p) - \mathbb{E}[S \cdot \mathbf{1}_{S \le p}](1 - F(p))
$$
\n
$$
= \mathbb{E}[S](1 + F(p)) - \mathbb{E}[S \cdot \mathbf{1}_{S \le p}]
$$
\n
$$
= \mathbb{E}[S](1 + F(p)) - pF(p) + \int_{0}^{p} F(s) ds
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Assume F is known, find best possible p for maximizing welfare.

Theorem $p = \mu$ is optimal. That is, $p^* = \mathbb{E}[S] = \mathbb{E}[B]$

Proof.

$$
W(p, F) = \mathbb{E}[S](1 + F(p)) - pF(p) + \int_0^p F(s)ds
$$

$$
\frac{dW}{dp} = \mathbb{E}[S]f(p) - F(p) - pf(p) + F(p) = (\mathbb{E}[S] - p)f(p)
$$

KED KAP KED KED E VAR

Therefore, $W(p, F)$ is maximized when $\mu = \mathbb{E}[S] = p$.

We have seen $W(p, F)$ is maximized when $p = \mu$. Therefore, best-possible approximation ratio is

$$
\inf_F \frac{W(\mu_F, F)}{\mathsf{OPT}\text{-}W(F)}
$$

On the other hand,

$$
W(\mu, F) = \mu \cdot (1 + F(\mu)) - \mathbb{E}[S \cdot \mathbf{1}_{S \le \mu}]
$$

=
$$
\mu + (\mu - \mathbb{E}[S|S \le \mu]) \cdot F(\mu)
$$

KED KAP KED KED E VAR

 $W(\mu, F)$ depends on only three quantities: μ , $F(\mu)$, $\mathbb{E}[S|S \leq \mu]$.

 $W(\mu, F)$ depends on only three quantities: μ , $F(\mu)$, $\mathbb{E}[S|S \leq \mu]$.

Define subspace of probability distributions that fixes the three quantities:

 $\Delta(\mu, \mu_1, \gamma) :=$

.

{probability distribution $F | \mathbb{E}[S] = \mu, \mathbb{E}[S|S \leq \mu] = \mu_1, F(\mu) = \gamma$ }

Then, the approximation ratio is equal to

$$
\inf_{0 \le \mu_1 \le \mu, \mu > 0; 0 < \gamma \le 1} \left[\inf_{F \in \Delta(\mu, \mu_1, \gamma)} \frac{\mu + (\mu - \mu_1)\gamma}{\mathsf{OPT\text{-}W}(F)} \right]
$$

K ロ ▶ K 個 ▶ K 필 ▶ K 필 ▶ - 필 - K 9 Q Q

Let $\Delta^4(\mu,\mu_1,\gamma)$ be a subset of $\Delta(\mu,\mu_1,\gamma)$ which is a set of distributions supported on at most 4 points. Then the following lemma holds:

Lemma

For any fixed $0 \leq \mu_1 \leq \mu \leq 1, \mu > 0, 0 < \gamma \leq 1$,

$$
\inf_{F \in \Delta(\mu,\mu_1,\gamma)} \frac{\mu + (\mu - \mu_1)\gamma}{\mathit{OPT-W}(F)} = \inf_{F \in \Delta^4(\mu,\mu_1,\gamma)} \frac{\mu + (\mu - \mu_1)\gamma}{\mathit{OPT-W}(F)}
$$

KED KAP KED KED E VAA

Therefore, to get best possible approximation ratio, it is enough to consider only distributions of at most 4 points.

Sketch of proof.

First, Rescaling the domain of F in order to $F(0) = 0, F(1) = 1$.

- For any probability mass in $(0, \mu)$, split the mass into two equal masses. Move each mass in opposite directions, until one mass hits the boundary of the interval $[0, \mu]$.
- For any probability mass in $(\mu, 1)$, split the mass into two equal masses. Move each mass in opposite directions, until one mass hits the boundary of the interval $[\mu + \delta, 1]$ (sufficiently small $\delta > 0$).

メロトメ 御 トメ 君 トメ 君 トッ 君

 Ω

Above operation do not change μ , $F(\mu)$, $\mathbb{E}[S|S \leq \mu]$ and increase $\mathbb{E}[B-S]$ and therefore OPT- $W(F)$. So there is always better distribution consists of 4 points.

By using former lemma and large amount of calculation, we can derive the following result:

Theorem

$$
\inf_{0 \le \mu_1 \le \mu; \mu > 0; 0 < \gamma \le 1} \left[\inf_{F \in \Delta^4(\mu, \mu_1, \gamma)} \frac{\mu + (\mu - \mu_1)\gamma}{\mathit{OPT\text{-}W}(F)} \right] \ge \frac{2 + \sqrt{2}}{4}
$$

And also, there is a sequence of distributions $\{F_n\}_{n=1}^\infty$ such that

$$
\lim_{n \to \infty} \frac{W(\mu_n, F_n)}{\text{OPT-W}(F_n)} = \frac{2 + \sqrt{2}}{4}
$$

K ロ ▶ K 個 ▶ K 필 ▶ K 필 ▶ - 필 - K 9 Q Q

Therefore, the following holds:

Theorem

the best-possible approximation ratio of welfare is $\frac{2+\sqrt{2}}{4}$.

Asymmetric Case

- Given F_B and F_S , known best approximation ratio for welfare was $1 - 1/e$.
- **o** It is based on the fact

$$
\sup_{p} \frac{W(p, F_S, F_B)}{\text{OPT-W}(F_S, F_B)} \ge 1 - \frac{1}{e} + \frac{1}{e} \cdot \mathbb{E}[\max(S - B, 0)]
$$

KED KAP KED KED E VAA

- It is also known that $\frac{3}{4}$ -approximation is possible for distribution (F_S, F_B) that satisfies $\mathbb{E}[\max(S - B, 0)] = 0$.
- \bullet Using above two facts, $1 1/e + \epsilon$ bound can be achieved heuristically using the closeness of $\mathbb{E}[\max(S - B, 0)]$ to 0 $({\epsilon} > 0.0001).$

Asymmetric Case

- Yang Cai's paper relesed in 2023 shows there is a fixed-price mechanism achives at least 0.72 of the optimal welfare, and there is a not fixed-price mechanism achieves 0.7381 of the optimal welfare.
- Just like we used distribution with only 4 possible values in approximation of welfare in symmetric case, it uses discretization technique.

イロト イ押 トイヨ トイヨ トー

E. Ω Thank you!

メロトメ 御 トメ ミトメ ミト

重

 299