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Problem

Given a function 𝑓 x : 0,1 𝑛 → 0,1 , find a 𝑛-bit string x∗ such that 𝑓 x∗ = 1.

Let 𝑁 = 2𝑛.

Requires 𝑂 𝑁 function calls in the classical model.

Grover’s Algorithm (1996)

Requires Θ 𝑁 function calls in the quantum model.
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Recap
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Recap – complex number

Complex number. 𝑧 = 𝑎 + 𝑏𝑖 where 𝑎 and 𝑏 are real numbers.

- 𝑎 = 𝑅𝑒 𝑧 is the real part of 𝑧

- 𝑏 = 𝐼𝑚 𝑧 is the imaginary part of 𝑧

- 𝑧∗ ≔ 𝑎 − 𝑏𝑖 is the conjugate of 𝑧.

- 𝑧 = 𝑅𝑒 𝑧 2 + 𝐼𝑚 𝑧 2 = 𝑎2 + 𝑏2 is the magnitude of 𝑧.

Observation. 𝑧 2 = 𝑎 + 𝑏𝑖 𝑎 − 𝑏𝑖 = 𝑧∗𝑧.
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Recap – qubit

The Qubit (short for quantum bit ).  𝜙 = 𝛼 0 + 𝛽 1

where 𝛼 and 𝛽 are complex numbers such that 𝛼 2 + 𝛽 2 = 1.

Superposition. Measuring 𝜙 will yield either zero w/ probability 𝛼 2 or one w/ probability 𝛽 2.

The state of the qubit 𝜙 is two-dimensional complex vector 𝛼
𝛽

.

𝜙 ≔ 𝛼 𝛽 ∗ = 𝛼∗ 𝛽∗ , i.e., the conjugate transpose of 𝛼
𝛽

.
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Recap – systems of qubit

Systems of Qubit. (Tensor product or Kronecker product) 

𝜙1𝜙2 = 𝜙1 ⊗ 𝜙2 =
𝛼1
𝛽1

⊗
𝛼2
𝛽2

=

𝛼1𝛼2
𝛼1𝛽2
𝛽1𝛼2
𝛽1𝛽2

= 𝛼1𝛼2 00 + 𝛼1𝛽2 01 + 𝛽1𝛼2 10 + 𝛽1𝛽2 11

The state below is entangled i.e., not separable. 

𝜙 =
1

2
00 + 11

The state 𝜙′ =
1

2
01 + 11 is not entangled. Since 

𝜙′ =
1

2

0
1
0
1

=
1

2

1

1
⊗

0

1
=

0 + 1

2
⊗ 1
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Recap – qubits are just vectors

Inner product.  𝜙1|𝜙2 = 𝛼1 𝛽1
∗
𝛼2
𝛽2

= 𝛼1
∗𝛼2 + 𝛽1

∗𝛽2 where 𝛼1 𝛽1
∗ = 𝛼1

∗ 𝛽1
∗ .

Outer product. 𝜙1 𝜙2 =
𝛼1
𝛽1

𝛼2 𝛽2
∗ =

𝛼1𝛼2
∗ 𝛼1𝛽2

∗

𝛽1𝛼2
∗ 𝛽1𝛽2

∗

Exercise (expressing matrix).

- 0 0 − 1 1 =
1 0
0 −1

= Mapping 0 → 0 , 1 → − 1

- 00 00 + 01 01 + 10 11 + 11 10 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

= Mapping 00 → 00 , 01 → 01 , 10 → 11 , 11 → 10

𝜙1 𝜙2 : a matrix with mapping 𝜙1 → 𝜙2
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Recap – unitary matrix

Unitary Matrix.   The matrix 𝑈 is unitary if 𝑈𝑈† = 𝑈†𝑈 = 𝐼 where 𝑈† is the transposed conjugate of 𝑈.

- 𝑈† ≔ 𝑈∗𝑇 is sometimes called Hermitian conjugate matrix or adjoint matrix.

Unitary Transformation.   Change of the state is done by a series of unitary transformations.

Basic unitary transformations are called gates.

Unitarity implies

1. #input qubits = #output qubits

2. Reversible
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Recap – common gates (one-qubit gates)

Not. NOT = 𝑋 =
0 1
1 0

- 𝛼 0 + 𝛽 1 ⟶

Hadamard. 𝐻 =
1

2

1 1
1 −1

Exercise.

- 0 ⟶

- 1 ⟶

0 + 1

2

𝜷 0 + 𝜶|1⟩

0 − 1

2
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Recap – common gates (multi-qubit gates)

Controlled-NOT. CNOT =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

- 𝛼1𝛼2 00 + 𝛼1𝛽2 01 + 𝛽1𝛼2 10 + 𝛽1𝛽2 11 ⟶

Observe.      CNOT = 00 00 + 01 01 + 10 11 + 11 10 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

𝛼1𝛼2 00 + 𝛼1𝛽2 01 + 𝛽1𝛽2 10 + 𝛽1𝛼2 11
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Recap – applying transformations

CNOT 𝐻⊗ 𝐼

1. 𝐻⊗ 𝐼 0 ⊗ 0 =

2.CNOT
00 + 10

2

Bell state 𝛽00 =
00 + 11

2
.  (Note that its state is entangled.)

0 + 1

2
⊗ 0 =

00 + 10

2

=
1

2
CNOT 00 + CNOT 10 =

1

2
00 + 11 =

00 + 11

2
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Quantum Oracle
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Problem

Given a function 𝑓 x : 0,1 𝑛 → 0,1 , find a 𝑛-bit string x∗ such that 𝑓 x∗ = 1.

Let 𝑁 = 2𝑛.

Requires 𝑂 𝑁 function calls in the classical model.

Grover’s Algorithm

Requires Θ 𝑁 function calls in the quantum model.

“Function” should be something like a quantum gate... and note that it must be unitary...
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Quantum Oracle for Unary Function

Suppose we are given a black box unary function 𝑓 x : 0,1 𝑛 → 0,1 .

Using this black box, one can build a new (unitary) gate that

• takes 𝑛 + 1 -bits in and 𝑛 + 1 -bits out,

• computes 𝑓 when proper input is given, and

• has the same computational complexity.

How? 

x 𝑦
𝑈𝑓

x 𝑓 x ⊕ 𝑦

where ⊕ is integer mod-2.

𝑥 𝑦 𝑥 ⊕ 𝑦

0 0 0

0 1 1

1 0 1

1 1 0
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Quantum Oracle for Unary Function

Suppose we are given a constant function 𝑓 x : 0,1 → 1.

x 𝑦
𝑈𝑓

x 1⊕ 𝑦

How does 𝑈𝑓 look?

00 01 + 01 00 + 10 11 + 11 10 =

0 1
1 0

0 0
0 0

0 0
0 0

0 1
1 0

Unitary?

• A square matrix is unitary if it can be broken down into smaller unitary matrices along its diagonal.

𝑥 𝑦 𝑈𝑓 𝑥 𝑦

0 0 0 1

0 1 0 0

1 0 1 1

1 1 1 0

𝜎𝑥: Pauli matrix
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Quantum Oracle for Unary Function

Suppose we are given a unary function 𝑓 x : 0,1 𝑛 → 0,1 .

Consider when x = 00⋯0. 

x 𝑦
𝑈𝑓

x 𝑓 𝑥 ⊕ 𝑦

x 𝑦 𝑓(x) 𝑈𝑓 x 𝑦

00⋯0 0 0 00⋯0 0

00⋯0 1 0 00⋯0 1

00⋯0 0 1 00⋯0 1

00⋯0 1 1 00⋯0 0
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Quantum Oracle for Unary Function

Suppose we are given a unary function 𝑓 x : 0,1 𝑛 → 0,1 .

Consider when x = 00⋯0. 

x 𝑦
𝑈𝑓

x 𝑓 𝑥 ⊕ 𝑦

When 𝑓 x = 0, 𝑈𝑓 looks like

x 𝑦 𝑓(x) 𝑈𝑓 x 𝑦

00⋯0 0 0 00⋯0 0

00⋯0 1 0 00⋯0 1

00⋯0 0 1 00⋯0 1

00⋯0 1 1 00⋯0 0

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⋮ ⋮

?

?
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Quantum Oracle for Unary Function

Suppose we are given a unary function 𝑓 x : 0,1 𝑛 → 0,1 .

Consider when x = 00⋯0. 

x 𝑦
𝑈𝑓

x 𝑓 𝑥 ⊕ 𝑦

When 𝑓 x = 1, 𝑈𝑓 looks like

x 𝑦 𝑓(x) 𝑈𝑓 x 𝑦

00⋯0 0 0 00⋯0 0

00⋯0 1 0 00⋯0 1

00⋯0 0 1 00⋯0 1

00⋯0 1 1 00⋯0 0

0 1
1 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⋮ ⋮

?

?
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Quantum Oracle for Unary Function

Suppose we are given a unary function 𝑓 x : 0,1 𝑛 → 0,1 .

x 𝑦
𝑈𝑓

x 𝑓 𝑥 ⊕ 𝑦

Then 𝑈𝑓 looks like

and it is unitary.

0 1
1 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

[I or 𝜎𝑥]

[I or 𝜎𝑥]

[I or 𝜎𝑥]

[I or 𝜎𝑥]
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Quantum Algorithm’s Complexity

Relativized Time Complexity

- The time complexity without knowledge of the oracle’s design.

- Deutsch-Jozsa’s algorithm offers a deterministic exponential speed-up relative to the oracle.

- Bernstein-Vazirani’s algorithm offers a polynomial speed-up relative to the oracle.

Absolute Time Complexity

- The time complexity with knowledge of the oracle’s design

- Shor’s algorithm provides absolute speed-up.

(If we allow small error, no speed-up.)

(even if small error is allowed)
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Problem

Given a function 𝑓 x : 0,1 𝑛 → 0,1 , find the 𝒏-bit target string x∗ such that 𝑓 x∗ = 1.

Let 𝑁 = 2𝑛.

Requires 𝑂 𝑁 function calls in the classical model.

Given a quantum oracle 𝑶𝒇, find a (𝑛-bit) target string x∗.

Grover’s Algorithm. Requires Θ 𝑁 calls to the quantum oracle.
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Grover’s Algorithm

Presented by Changyeol Lee



Grover operator 𝐺

Let 𝜓 ≔
1

𝑁
00⋯00 + 00⋯01 + 00⋯10 +⋯+ 11⋯11 be the uniform superposition.

(Shorthand) 𝜓 =
1

𝑁
σ𝑖=0
𝑁−1 |𝑖⟩ =

1

𝑁
σ𝑖 𝑖

Grover operator 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑂𝑓

The action of 2 𝜓 𝜓 − 𝐼𝑁 on an arbitrary state 𝜙 = σ𝑖 𝑎𝑖 𝑖 =

𝑎0
𝑎1
⋮

𝑎𝑁−1

2 𝜓 𝜓 − 𝐼𝑁 𝜙 =෍

𝑖

2
𝑎0 +⋯+ 𝑎𝑁−1

𝑁
− 𝑎𝑖 |𝑖⟩

𝜓 𝜓 =
1

𝑁

1 1 1
1 1 1
1 1 1

⋯
⋯
⋯

1
1
1

⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 ⋯ 1

𝐼𝑁 =

1 0 0
0 1 0
0 0 1

⋯
⋯
⋯

0
0
0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

𝐼2 =
1 0
0 1
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Grover’s Algorithm

Step 1. Perform state initialization 

- (𝑛 qubits) 00⋯0 ⟶
1

𝑁
00⋯00 + 00⋯01 + 00⋯10 +⋯+ 11⋯11

- (ancillary qubit) |0⟩ ⟶
0 − 1

2

Step 2. Apply Grover operator 
𝜋 𝑁

4
times

Step 3. Perform measurement on all qubit (except the ancillary qubit)
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Grover’s Algorithm

Step 1. Initialization

0 𝐻

0 𝐻

⋮ ⋮

0 𝐻

0 𝐻

0 𝑋𝑎𝑛𝑐𝑖𝑙𝑙𝑎

𝑞0

𝑞1

⋮

𝑞𝑛−2

𝑞𝑛−1

𝐻

𝑋 =
0 1
1 0

𝐻 =
1

2

1 1
1 −1

- 0 ⟶
0 + 1

2
, 1 ⟶

0 − 1

2

0 + 1

2
 

0 + 1

2
 

⋮

0 + 1

2
 

0 + 1

2
 

0 − 1

2
 

0 + 1

2
⊗

0 + 1

2
⊗⋯⊗

0 + 1

2

=
1

𝑁
00⋯00 + 00⋯01 + 00⋯10 +⋯+ 11⋯11

1

𝑁
00⋯00 + 00⋯01 + 00⋯10 +⋯+ 11⋯1 ⊗

0 − 1

2

Presented by Changyeol Lee



Grover’s Algorithm

Step 2. Apply 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑂𝑓

𝑂𝑓
1

𝑁
00⋯00 + 00⋯01 +⋯+ x∗ +⋯+ 11⋯11 ⊗

0 − 1

2
 

x 𝑞 ⟶ x 𝑓 x ⊕ 𝑞

=
1

𝑁
𝑂𝑓 00⋯00 ⊗

0 − 1

2
+⋯+ 𝑂𝑓 x∗ ⊗

0 − 1

2
+⋯+𝑂𝑓 11⋯11 ⊗

0 − 1

2

= 𝑂𝑓
x∗ 0 − x∗ 1

2
=
𝑂𝑓 x∗ 0 − 𝑂𝑓 x∗ 1

2

=
x∗ 1 − x∗ 0

2

= x∗ ⊗
1 − 0

2
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Grover’s Algorithm

Step 2. Apply 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑂𝑓

𝑂𝑓
1

𝑁
00⋯00 + 00⋯01 +⋯+ x∗ +⋯+ 11⋯11 ⊗

0 − 1

2
 

x 𝑞 ⟶ x 𝑓 x ⊕ 𝑞

=
1

𝑁
00⋯00 + 00⋯01 +⋯+ (−𝟏) x∗ +⋯+ 11⋯11 ⊗

0 − 1

2

=
1

𝑁
00⋯00 ⊗

0 − 1

2
+ ⋯+ x∗ ⊗

− 𝟎 + 𝟏

𝟐
+⋯+ 11⋯11 ⊗

0 − 1

2

=
1

𝑁
𝑂𝑓 00⋯00 ⊗

0 − 1

2
+⋯+ 𝑂𝑓 x∗ ⊗

0 − 1

2
+⋯+𝑂𝑓 11⋯11 ⊗

0 − 1

2
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Grover’s Algorithm

Step 2. Apply 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑂𝑓

2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2
1

𝑁
00⋯00 + 00⋯01 +⋯+ (−1) x∗ +⋯+ 11⋯11 ⊗

0 − 1

2

= 2 𝜓 𝜓 − 𝐼𝑁
1

𝑁
00⋯00 + 00⋯01 +⋯+ −1 x∗ +⋯+ 11⋯11 ⊗

0 − 1

2

= 2 𝜓 𝜓 − 𝐼𝑁
1

𝑁
00⋯00 + 00⋯01 +⋯+ −1 x∗ +⋯+ 11⋯11 ⊗ 𝐼2

0 − 1

2
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Grover’s Algorithm

Step 2. Apply 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑂𝑓

2 𝜓 𝜓 − 𝐼𝑁
1

𝑁
00⋯00 + 00⋯01 +⋯+ −1 x∗ +⋯+ 11⋯11

2 𝜓 𝜓 − 𝐼𝑁 𝜙 =෍

𝑖

2

𝑁
𝑎0 +⋯+ 𝑎𝑁−1 − 𝑎𝑖 |𝑖⟩

𝑁 − 2

𝑁

=
1

𝑁

𝑁 − 4

𝑁
00⋯00 +⋯+

3𝑁 − 4

𝑁
x∗ +⋯+

𝑁 − 4

𝑁
11⋯11

=
2

𝑁

𝑁 − 2

𝑁
−

1

𝑁
00⋯00 +⋯+

2

𝑁

𝑁 − 2

𝑁
+

𝟏

𝑵
x∗ +⋯+

2

𝑁

𝑁 − 2

𝑁
−

1

𝑁
11⋯11

amplified
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Grover’s Algorithm

Step 2. Apply 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑂𝑓 again

𝑂𝑓
1

𝑁

𝑁 − 4

𝑁
00⋯00 +⋯+

3𝑁 − 4

𝑁
x∗ +⋯+

𝑁 − 4

𝑁
11⋯11 ⊗

0 − 1

2
 

=
1

𝑁

𝑁 − 4

𝑁
00⋯00 +⋯+ (−𝟏)

3𝑁 − 4

𝑁
x∗ +⋯+

𝑁 − 4

𝑁
11⋯11 ⊗

0 − 1

2

x 𝑞 ⟶ x 𝑓 x ⊕ 𝑞

flipped
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Grover’s Algorithm

Step 2. Apply 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑂𝑓 again

2 𝜓 𝜓 − 𝐼𝑁
1

𝑁

𝑁 − 4

𝑁
00⋯00 +⋯+ (−1)

3𝑁 − 4

𝑁
x∗ +⋯+

𝑁 − 4

𝑁
11⋯11

=
1

𝑁

𝑁2 − 12𝑁 + 16

𝑁2 00⋯00 +⋯+
5𝑁2 − 20𝑁 + 16

𝑁2 x∗ +⋯+
𝑁2 − 12𝑁 + 16

𝑁2 11⋯11

2 𝜓 𝜓 − 𝐼𝑁 𝜙 =෍

𝑖

2

𝑁
𝑎0 +⋯+ 𝑎𝑁−1 − 𝑎𝑖 |𝑖⟩

more amplified
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Grover’s Algorithm

Step 2. Apply 𝐺 fixed amount

informally
1

𝑁
𝜖 00⋯00 +⋯+ 𝑁 − 𝜖′ x∗ +⋯+ 𝜖 11⋯11

for some small 𝜖, 𝜖′.

amplified a lot
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Grover’s Algorithm

Step 3. Measurement

informally
1

𝑁
𝜖 00⋯00 +⋯+ 𝑁 − 𝜖′ x∗ +⋯+ 𝜖 11⋯11

Obtain |𝑥∗⟩ with probability close to 1.
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Analysis
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Grover’s Algorithm, Geometric Explanation

Why applying Grover operator (exactly) 
𝜋 𝑁

4
times?

Let 𝜔 =
1

𝑁−1
σ𝑖 𝑖 − |x∗⟩

Note that 𝜔 and |x∗⟩ are orthonormal.

Note. After the step 1, the state is 

1

𝑁
00⋯00 + 00⋯01 + 00⋯10 +⋯+ 11⋯1

=
𝑁 − 1

𝑁
𝜔 +

1

𝑁
x∗

= cos𝜃 𝜔 + sin 𝜃 x∗

|x∗⟩

|𝜔⟩𝜃
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Grover’s Algorithm, Geometric Explanation

What happens we apply 𝑂𝑓?

cos 𝜃 𝜔 + sin 𝜃 x∗ ⟶ cos 𝜃 𝜔 − sin 𝜃 x∗

Applying 𝑂𝑓 =Reflection about |𝜔⟩

|x∗⟩

|𝜔⟩𝜃
𝜃

Presented by Changyeol Lee



Grover’s Algorithm, Geometric Explanation

What happens we apply 2 𝜓 𝜓 − 𝐼𝑁 ?

Any state 𝜙 of this plane can be decomposed into

𝜙 = 𝛼 𝜓 + 𝛽|𝜓⊥⟩

Then,

Applying 2 𝜓 𝜓 − 𝐼𝑁 = Reflection about 𝜓

|x∗⟩

|𝜔⟩
|𝜓⟩

|𝜓⊥⟩

𝜃
2𝜃

𝜃

= 𝜶 𝝍 − 𝜷|𝝍⊥⟩

= 2𝛼 𝜓 − 𝛼 𝜓 + 𝛽 𝜓⊥

= 2𝛼 𝜓 𝜓 𝜓 + 2𝛽 𝜓 𝜓 |𝜓⊥⟩ − 𝛼 𝜓 + 𝛽 𝜓⊥

= 2 𝜓 𝜓 𝛼 𝜓 + 𝛽|𝜓⊥⟩ − 𝛼 𝜓 + 𝛽 𝜓⊥

2 𝜓 𝜓 − 𝐼𝑁 𝜙

𝜓 𝜓 : a mapping 𝜓 → 𝜓

inner product 𝜓 𝜓⊥ = 0
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Grover’s Algorithm, Geometric Explanation

After first iteration,

cos 𝜃 𝜔 + sin 𝜃 x∗ ⟶ cos3𝜃 𝜔 + sin 3𝜃 x∗

After each iteration,

cos 5𝜃 𝜔 + sin 5𝜃 x∗

cos 7𝜃 𝜔 + sin 7𝜃 x∗

⋮

After applying 𝑘 times,

cos(𝜃 + 2𝑘𝜃) 𝜔 + sin(𝜃 + 2𝑘𝜃) x∗

|x∗⟩

|𝜔⟩𝜃
2𝜃

3𝜃

4𝜃

6𝜃
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Grover’s Algorithm, Geometric Explanation

Recall 
𝑁−1

𝑁
𝜔 +

1

𝑁
x∗ = cos𝜃 𝜔 + sin 𝜃 x∗ .

- 𝜃 = arccos
𝑁−1

𝑁

Find 𝑘 that maximizes sin2(𝜃 + 2𝑘𝜃) = sin2 2𝑘 + 1 arccos
𝑁−1

𝑁

or find 𝑘 such that 
𝜋

2
∼ (2𝑘 + 1) arccos

𝑁−1

𝑁

𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
𝜋

4
𝑁 −

1

2
− 𝑂 1/𝑁

|x∗⟩

|𝜔⟩𝜃
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Applications
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Factoring

Factor an integer 𝑀 = 𝑝 × 𝑞 into 𝑝 and 𝑞 where 𝑝 and 𝑞 are primes (22𝑛−1 ≤ 𝑀 < 22𝑛 for some 𝑛)

WLOG, 𝑝 ≤ 𝑀 < 2𝑛.

Given a function 𝑓(𝑥) that outputs 1 if 𝑥 = 𝑝; 0 otherwise

Given a function 𝑓 x : 0,1 𝑛 → 0,1 , find the target string 𝑝.

Grover’s Algorithm.

Requires 
𝜋

4
𝑁 −

1

2
− 𝑂 1/𝑁 calls to the quantum oracle. 𝑁 = 2𝑛

Shor’s algorithm runs in 𝑂 𝑛3 log 𝑛 times, using 𝑂 𝑛2 log 𝑛 log log 𝑛 gates.
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Multiple Target Strings

If there are 𝑡 number of target strings, by calling 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
𝜋

4
𝑁/𝑡 −

1

2
− 𝑂 𝑡/𝑁

or Θ 𝑁/𝑡 calls to the oracle, we can find a target string.

What if the number of target strings 𝑡 is unknown?

Theorem (Boyer et al., 1996).

There is an (randomized) algorithm that find a target string in expected time in 𝑂 𝑁/𝑡 . 
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Minimum Searching

Given a function 𝐹 x : 0,1 𝑛 → ℝ, find a 𝑛-bit string x∗ that minimizes 𝐹 x∗ .

- We are given an oracle that “compares” 𝐹 with some constant 𝑐.

E.g.) 𝐹 0 = 9, 𝐹 1 = 5, 𝐹 2 = 6, 𝐹 3 = 7 (Here, 𝑛 = 2.)

Suppose 𝑐 = 𝐹 3 = 7. 

Then, 𝑓 0 = 0, 𝑓 1 = 1, 𝑓 2 = 1, 𝑓 3 = 0.

Construct a Grover-Search-Problem instance, i.e., given a function 𝑓 x : 0,1 𝑛 → 0,1 , 

find a 𝑛-bit string x∗ such that 𝑓 x∗ = 1 where the number of target strings, say 𝑡, is unknown.

⇒ 𝑂 𝑁/𝑡 calls to the oracle (in expectation).

E.g.) output = 2
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Minimum Searching

Given a function 𝐹 x : 0,1 𝑛 → ℝ, find a 𝑛-bit string x∗ that minimizes 𝐹 x∗ .

- We are given an oracle that “compares” 𝐹 with some constant 𝑐.

E.g.) 𝐹 0 = 9, 𝐹 1 = 5, 𝐹 2 = 6, 𝐹 3 = 7 (Here, 𝑛 = 2.)

Suppose 𝑐 = 𝑭 𝟐 = 6. 

Then, 𝑓 0 = 0, 𝑓 1 = 1, 𝑓 2 = 0, 𝑓 3 = 0.

Construct a Grover-Search-Problem instance, i.e., given a function 𝑓 x : 0,1 𝑛 → 0,1 , 

find a 𝑛-bit string x∗ such that 𝑓 x∗ = 1 where the number of target strings, say 𝑡, is unknown.

⇒ 𝑂 𝑁/𝑡 calls to the oracle (in expectation).

E.g.) output = 1

Presented by Changyeol Lee



Minimum Searching

Given a function 𝐹 x : 0,1 𝑛 → ℝ, find a 𝑛-bit string x∗ that minimizes 𝐹 x∗ .

- We are given an oracle that “compares” 𝐹 with some constant 𝑐.

E.g.) 𝐹 0 = 9, 𝐹 1 = 5, 𝐹 2 = 6, 𝐹 3 = 7 (Here, 𝑛 = 2.)

Suppose 𝑐 = 𝐹 𝟏 = 5. 

Then, 𝑓 0 = 0, 𝑓 1 = 0, 𝑓 2 = 0, 𝑓 3 = 0.

…
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Minimum Searching

Given a function 𝐹 x : 0,1 𝑛 → ℝ, find a 𝑛-bit string x∗ that minimizes 𝐹 x∗ .

- We are given an oracle that “compares” 𝐹 with some constant 𝑐.

Step 1. Pick an index 𝑗 uniformly at random among 0,1,⋯ ,𝑁 − 1

Step 2. Repeat the following until the total running time is more than Θ 𝑁 :

Let 𝑂𝑓 be the comparison oracle with 𝑐 = 𝐹 𝑗

Construct a Grover-Search-Problem instance and run the algorithm.

Let 𝑗′ be the output. Update 𝑗 to 𝑗′ if 𝐹 𝑗′ < 𝐹 𝑗 .

Theorem (Dürr and Høyer, 1996).

This algorithm finds the index of the minimum value of 𝐹 with probability at least ½ and runs in Θ 𝑁 .
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Minimum Searching with Different Types

Given a function 𝐹 x : 0,1 𝑛 → ℝ and an onto function type x : 0,1 𝑛 → 1,2,⋯ , 𝑑 , 

find x1
∗ , ⋯ , x𝑑

∗ where x𝑖
∗ = argmintype x =𝑖 𝐹(x) for each type 𝑖 = 1,2,⋯ , 𝑑.

Naïve application of the previous algorithm – run 𝑑 times for each type, having Θ 𝑑 𝑁 running time.

Theorem (Dürr et al., 2006).

There is an algorithm solves the problem with probability at least ½ and runs in 𝑂 𝑑𝑁 .
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Minimum Spanning Tree

Quantumize the classical (Boruvka’s algorithm) MST algorithm

input : Adjacency list-array implementation of undirected 𝐺 = 𝑉, 𝐸 with cost function 𝑐: 𝐸 → ℝ

Initialization 𝒯 = 1 , 2 ,⋯ , 𝑉

Repeat until 𝒯 = 1:

Let 𝒯 = 𝑇1, ⋯ , 𝑇𝑘 . Find 𝑒1, ⋯ , 𝑒𝑘 where 𝑒𝑖 is a minimum cost edge leaving 𝑇𝑖.

Merge 𝑇𝑖 and 𝑒𝑖 for each 𝑖 and update 𝒯.

Return 𝑇1

https://www.baeldung.com/java-boruvka-algorithm



Minimum Spanning Tree

Quantumize the classical (Boruvka’s algorithm) MST algorithm

input : Adjacency list-array implementation of undirected 𝐺 = 𝑉, 𝐸 with cost function 𝑐: 𝐸 → ℝ

Initialization 𝒯 = 1 , 2 ,⋯ , 𝑉

Repeat until 𝒯 = 1:

Let 𝒯 = 𝑇1, ⋯ , 𝑇𝑘 . Find 𝑒1, ⋯ , 𝑒𝑘 where 𝑒𝑖 is a minimum cost edge leaving 𝑇𝑖.

Merge 𝑇𝑖 and 𝑒𝑖 for each 𝑖 and update 𝒯.

Return 𝑇1

Consider the directed version of the graph, i.e., 𝑢, 𝑣 → 𝑢, 𝑣 , 𝑣, 𝑢

𝐹 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 if 𝑢, 𝑣 is leaving some tree and 𝐹 𝑢, 𝑣 = ∞ if not. 

type 𝑢, 𝑣 = 𝑖 such that 𝑢 ∈ 𝑇𝑖

Then, apply the algorithm for the Minimum Searching with Different Types (with more queries).
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Minimum Spanning Tree

Let 𝑛 = 𝑉 and 𝑚 = 𝐸 .

On ℓ𝑡ℎ iteration, queries ℓ + 2 𝑂 𝑚𝑘 times.

#of queries

- Observe that 𝑘 ≤ 𝑛/2ℓ−1.

෍

ℓ≥1

ℓ + 2 𝑂 𝑚𝑘 ≤෍

ℓ≥1

ℓ + 2 𝑂
𝑚𝑛

2ℓ−1
= 𝑂 𝑛𝑚

Error probability at most 

෍

ℓ≥1

1

2ℓ+2
≤
1

4
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Other applications

Connectivity

Network flow problem. (Finding Max Flow)

Matching on graph

Graph coloring

3-SAT

⋮

approximation algorithms
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Thank you
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