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Problem

Given a function f(x):{0,1}" - {0,1}, find a n-bit string x* such that f(x*) = 1.

Let N = 2™,

Requires O(N) function calls in the classical model.

Grover's Algorithm (1996)

Requires ®(vVN) function calls in the quantum model.
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Recap



Recap - complex number

Complex number. z = a + bi where a and b are real numbers.
- a = Re(z) is the real part of z

-b = Im(z2) is the imaginary part of z

- z* = a — bi is the conjugate of z.

- |z| = JRe(2)? + Im(2)? = Va? + b? is the magnitude of z.

Observation. |z|? = (a + bi)(a — bi) = z*z.
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Recap - qubit

The Qubit (short for quantum bit). |¢) = a|0) + B|1)

where a and S are complex numbers such that |a|? + |5]? = 1.

Superposition. Measuring |¢) will yield either zero w/ probability |a|? or one w/ probability |B]>.

The state of the qubit |¢) is two-dimensional complex vector (g)

(pl = (a B)*=(a® PB7),i.e., the conjugate transpose of (g)
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Recap - systems of qubit

Systems of Qubit. (Tensor product or Kronecker product)

a0y
|p1P2) = [P1) ® |p2) = (Zi) X (;2) = (;igi) = a1,|00) + @1 ,101) + B1a,|10) + B152]11)
B1B2

The state below is entangled i.e., not separable.

6) = —
LG

The state [¢') = \/—15(|01) + |11)) is not entangled. Since

16') = — —i(l)®(°)—'°>+'1>®|1>
=m0 7)) T TR

(100) +[11))

_ Ok O

Presented by Changyeol Lee



Recap - gubits are just vectors

Inner product. {¢1|¢2) = (@1 B1)” (;Z) = aja, + 1B, where (ay  f1)" = (a7 7).

Outer product. |1 ){¢p,| = (,63{;1) (a, Br)* = (;ig;ﬁk Zigg) |p1){p2|: @ matrix with mapping |¢,) = |¢p2)

Exercise (expressing matrix).

- [0)0] — [1X1] = ((1) —01)

= Mapping {|0) — [0), 1) = —|1)}

_o O

-100)(00] + [01)01] + [10)(11] + |11){10] = (

_ oo O

0)

= Mapping {|00) - [00), |01) — |01), |10) — [11), |11) — [10)}

0
1
0
0

S OO -
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Recap - unitary matrix

Unitary Matrix. The matrix U is unitary if UUT = UTU = I where U is the transposed conjugate of U.

- Ut == U*" is sometimes called Hermitian conjugate matrix or adjoint matrix.

Unitary Transformation. Change of the state is done by a series of unitary transformations.

Basic unitary transformations are called gates.
Unitarity implies

1. #input qubits = #output qubits

2. Reversible
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Recap - common gates (one-qubit gates)

Not NOT = X = ((1) (1))

- al0) + 511) — BIO) + al1)

Hadamard. H = — (1 1 )

vz\1 -1
Exercise.
_ _10)+]1)
0) =
_ o)1)
1) — ==
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Recap - common gates (multi-qubit gates)

oIo -

0O O
Controlled-NOT. CNOT = d ; 8 g)
1 O

- a;05]00) + a;8,101) + B1a5]10) + B15111) — a1a2[00) + a1 5,|01) + 1 5,|10) + B a,|11)

o Ol O

)

Observe. CNOT = [00)(00] 4+ [01){01] + [10){11]| + |11){10] = (

_ O o O

o —O O
N~ —

o OO
o o O
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Recap - applying transformations

CNOT(H ® I)
10) H °
|0) D
10) + (1) |00} + [10)
1.(HYI)(|0 0)) = 0) =
(H® D(0) ®10)) 7 & [0) 7
|00)+|10) 1 1 |00) + |11)
2.CNOT = CNOT|00 CNOT|10)) = —(|00 11)) =
T =5 (CNOTI00) + CNOTI10) = —(100) + 1) = —

Bell state |Byg) = |oo>\/+§|11>_ (Note that its state is entangled.)
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Quantum Oracle



Problem

Given a function f(x):{0,1}" - {0,1}, find a n-bit string x* such that f(x*) = 1.

Let N = 2™,

Requires O(N) function calls in the classical model.

Grover's Algorithm

Requires ®(VN) function calls in the quantum model.

“Function” should be sowmething like 3 quantuw gate.. and note that it wust be unitary..

Presented by Changyeol Lee



Quantum Oracle for Unary Function

Suppose we are given a black box unary function f(x):{0,1}"* — {0,1}.

Using this black box, one can build a new (unitary) gate that
« takes (n + 1)-bitsin and (n + 1)-bits out,
* computes f when proper input is given, and

* has the same computational complexity.

How?

Ug
Ix)My) — %) D y)

where @ is integer mod-2.

_ | =[O |O|=x
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Quantum Oracle for Unary Function

Suppose we are given a constant function f(x):{0,1} — 1.

1) y) Ur (|} y)
” |0)|0) |0}1)
X)y) — ®I1D y) 10)]1) |0)|0)
|1)]0) |1)1)
DI | 11)]0)
How does Uy look?
0 1/0 0
100)(01] + [01)00] + [10)(11] + [11)(10]| = (1) 8 8 ‘I
0 0/1 0

0, . Pauli matrix
Unitary?

« A square matrix is unitary if it can be broken down into smaller unitary matrices along its diagonal.
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Quantum Oracle for Unary Function

Suppose we are given a unary function f(x):{0,1}" - {0,1}.

Consider whenx = 00--- 0.

Ur
I)y) — [X)|f(x) D y)
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|x)y) fG | Urxy)
100 -+ 0)|0) 0 100 -+ 0)|0)
|00 -+ 0)|1) 0 100 -+ 0)|1)
100 -+ 0)|0) 1 100 -+ 0)]1)
100 -+ 0)|1) 1 100 -+ 0)|0)



Quantum Oracle for Unary Function

Suppose we are given a unary function f(x):{0,1}" - {0,1}.

| Ky | e | Ul
Consider whenx = 00---0, 00 0)[0) i 100-0)]0)
Wy —5 WIFG @y 000y o [100-0)1)

|00 ---0)|0) 1 |00 ---0)[1)

|00 ---0)|1) 1 |00 ---0)]|0)

When f(x) = 0, Ur looks like

o
Ol
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Quantum Oracle for Unary Function

Suppose we are given a unary function f(x):{0,1}" - {0,1}.

Consider whenx = 00---0, 1) f Uf(lx>|y>)
|00 ---0)]|0) 0 |00 ---0)]|0)

Wly) —5 WIFG @y 00-0n| o  [100-0)1)

|00 ---0)|0) 1 |00 ---0)[1)

|00 ---0)[1) 1 |00 --- 0)|0)

When f(x) = 1, Ur looks like

)
_

o~J
___—

oo
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Quantum Oracle for Unary Function

Suppose we are given a unary function f(x):{0,1}" - {0,1}.

Ur
I)y) — [X)|f(x) D y)

Then Uy looks like

and it is unitary.
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Quantum Algorithm’s Complexity

Relativized Time Complexity
- The time complexity without knowledge of the oracle’s design. (1§ we allow swall ervor, no speed-u?.)
- Deutsch-Jozsa's algorithm offers a deterministic exponential speed-up relative to the oracle.

- Bernstein-Vazirani's algorithm offers a polynomial speed-up relative to the oracle. (even § swall ervor is allowed)

Absolute Time Complexity
- The time complexity with knowledge of the oracle’s design

- Shor's algorithm provides absolute speed-up.
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Problem

Given a function f(x):{0,1}" — {0,1}, find the n-bit target string x* such that f(x*) = 1.

Let N = 2™,

Requires O(N) function calls in the classical model.

Given a quantum oracle O, find a (n-bit) target string x*.

Grover's Algorithm. Requires ©(v/N) calls to the quantum oracle.
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Grover's Algorithm



Grover operator G

Let [y) = \/iN(IOO --00)+100---01) + [00---10) + --- + [11--- 11)) be the uniform superposition.

(Shorthand) ) = = N5t i) = = 2,10) 11
111 1
YXyl=5[1 1
Grover operator G = (2|}l — Iy) ® 1,)0¢ 1: 1
a0 1 0
a 0 1
The action of 2| }y| — Iy on an arbitrary state |¢) = X; a;li) = In=10 0
-1 0 0
+ -+ ay-
@)l - Iy = Y (22T g i

l
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Grover's Algorithm

Step 1. Perform state initialization
- (n qubits) [00---0) — \/LN(IOO-'- 00) + |00---01) +]00---10) + ---+ |11 ---11))

. : |0)—[1)
- (ancillary qubit) |0) — 7

Step 2. Apply Grover operator [%ﬂ times

Step 3. Perform measurement on all qubit (except the ancillary qubit)
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Grover's Algorithm

Step 1. Initialization X=(O 1)
1 0
0 |O) H |0)+]1) o
V2 1 /1 1
H=%(; _y)
q |0) H [0)+]1) V2\1 —1
1 V2 |0)+1) |0)—1)
-l0) — 222, 1) — 22
10)+]1) 0)+11) o [0)+]1) o o [0)+]1)
loy+]1) =—(]00---00) +|00---01)+ |00 ---10) + ---+ [11--- 11
Gn-1 10) H = JN ))
ooy Jx L gl 1=
ancilla 10) 7
1 10) —[1)
—(]00---00) + [00---01)+ |00 ---10) + -+ |11 1) @ ———
VN V2
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Grover's Algorithm

Step 2. Apply G = (Y}l — Iy) ® )0,

(1
0 _
10) — 1)

00---00
I ) & 7

/\%

(]00---00) + {00 - 01) + -+ [x*) + -+ + |11 -

)+

x)q) —

xfx) @ q)

10) — 1)
V2

11D ®

)

0) - I1>> bt 0 (m -1 ®

V2

1x")0) — |x*)|1)
V2

10) —
V2

_ 0¢(Ix")10)) — O¢(Ix7)[1))
B V2
1x*)[0)

+ Of <|X*) X

= Of
_x9ln) —
2

1) —10)
V2

=[x ®
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Grover's Algorithm

Step 2. Apply G = (1Y}l — Iy) ® I,)0; ) q) — %) D q)

d

(100--00) + 00 01} + -+ + [x*) + -+ + |11 - 11>)®|0>\/_§|1>>

0) = 1) Ao lo=1ny o=
( |00 00) @ —— >+---+0f<|x)® N >+ +0f<|11 1) ® — ))

|1> P (0 et SR 1 S0 P
|OO OO)® + -+ xR 72 + -+ 11--11) ® NG )

%IH

ﬁl

ﬂl

—(|oo 100) + 00+ 01) + =+ (—1)[x") + -+ [11 - 11))®|O>\/_§|1>

<|
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Grover's Algorithm

Step 2. Apply G = (2[P)(] — Iy) ® 1,)0f

_ Nt 11111 @ 2=
(Cly)Xyl -1 ® L) (\/—N(Ioo.--oo>+ 100--01) + -+ (—D)Ix*) + -+ 11 11) ® = )
= 2lYyXy| —Iy) i(|00“‘00>+|00"'01>+"'+(—1)|x*)+-~+|11...11)) ®<I |0)—|1>>
N N , —
= QlyXy| —1Iy) i(|00"'00)+|00"°01)+"°+(—1)|x*)+-.-+|11...11)) ®|0)—|1)
N N -
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Grover's Algorithm

Step 2. Apply G = (Y)Yl — Iy) ® 1,)0f

2
@Y - Il = ) (N (g + -+ ay-1) - ai> 0

i

N -2
VN

1
)l = Iy) (\/—N(|00~--00>+ 00+ 01) + -+ (=[x} + - + |11---11>)>

2N-—-2 1 2N—2 1 2N-—2 1
::<— — )IOO -00) + - 4—( )Ix)-+ -4—(—- — >|11~-11)

N VN N N N \/_ N VN N
_ L (M =%100--00) SN = N 1111)
_\/N N ces +...+ N X _|_...+ N e
amplified
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Grover's Algorithm

Step 2. Apply G = (1Y)l — Iy) ® I,)0; again 1X)q) — [ fX) D q)

0<1<N_4|00 00) + +3N_4|*>+ +u|11 11>>®|0>_|l>>
"\WN\ N N N V2

_ 1 (N_4|oo---oo>+---+ ~1

3N -4 N—4 1 10) — 1)
m |X>+...+T| ) (%) \/E

flipped
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Grover's Algorithm

Step 2. Apply G == ((2 —1 I,)O ‘ 2
ep PPy (( WXl = In) ® 2) r again Al _]N)|¢)=Z<N(a0+---+a1v_1)—ai>|i>

l

W] = Iy) 1 N_4|00 00) 4 - + (=1 3N_4| )+ +N_4|11 11)
1 N2—12N+16|OO 00) + +5N2—20N+16| - +N2—12N+16|11 .
VN N? N? i N?

more amplified
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Grover's Algorithm

Step 2. Apply G fixed amount

(informally) \/LN(EH)O - 00) + - + (\/N — e’)lx*) + -+ €|11-- 11))

amplified a lot

for some small ¢, €’.
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Grover's Algorithm

Step 3. Measurement

(informally) \/LN(EH)O - 00) + - + (\/N — e’)lx*) + -+ €|11-- 11))

Obtain |x*) with probability close to 1.
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Analysis



Grover's Algorithm, Geometric Explanation

Why applying Grover operator (exactly) [%ﬂ times?

Let |0) = == (Til0) = [x"))

x")

Note that |w) and |x*) are orthonormal.

Note. After the step 1, the state is

1
=(100+-00) +100+-01) + 100 +-10) + -+ 11+ 1))
SN )

NN

= cos 0 |w) + sin 0 [x*)
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Grover's Algorithm, Geometric Explanation

What happens we apply O?

cos O |w) + sin O |x*) — cos @ |w) — sin 6 |x*)

Applying Of =Reflection about |w)
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Grover's Algorithm, Geometric Explanation

) X7

What happens we apply |YXy| —Iy)?

Any state |¢) of this plane can be decomposed into

1) = alp) + B1) 1)

Then,
ClYXyl = Iy)[P)

= 2[P)l(aly) + Bl+)) — (aly) + Blp+))
= 2a| ) (p[lp) + 2B[) (| [p*) — (alyp) + Blt))
= 2aly) — (aly) + Bly*))

= alyp) — BlY)

[W)Xyl: a mapping [) = )
Applying (2|Y){¥| — Iy) = Reflection about [y) inner product (||yt) = 0
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Grover's Algorithm, Geometric Explanation

After first iteration,
cos O |w) + sin O |x*) — cos 36 |w) + sin 30 |x*)

After each iteration,

cos 560 |w) + sin 560 |x*)
cos 760 |w) + sin 760 |x*)

After applying k times,
cos(6 + 2k0) |w) + sin(6 + 2k6O) |x*)
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Grover's Algorithm, Geometric Explanation

Recall le) + = |X ) =cosO |w) + sin O [x*).

N—1
-0 = arccos [—
N

Find k that maximizes sin?(8 + 2k0) = sin? ((Zk + 1) arccos /%)

1

or find k such thatg ~ (2k + 1) arccos /N%

T 1
koptimal = Z\/N - E - 0('\/ 1/N)

Presented by Changyeol Lee



Applications



Factoring

Factor an integer M = p X q into p and g where p and q are primes (22" < M < 2%™ for some n)

WLOG, p < VM < 2™
Given a function f(x) that outputs 1 if x = p; 0 otherwise

Given a function f(x):{0,1}" - {0,1}, find the target string p.

Grover's Algorithm.

irac TN 1 _ _ 9n
Requires - VN — - — 0(y/1/N) calls to the quantum oracle. (N = 2™)

Shor's algorithm runs in 0(n3logn) times, using 0(n® lognloglogn) gates.
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Multiple Target Strings

If there are t number of target strings, by calling koptimar = %,/N/t — % — 0(,/t/N)

or ©(/N/t) calls to the oracle, we can find a target string.
What if the number of target strings t is unknown?

Theorem (Bover et al., 1996).

There is an (randomized) algorithm that find a target string in expected time in 0(y/N/t).
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Minimum Searching

Given a function F(x):{0,1}" — R, find a n-bit string x* that minimizes F(x*).

- We are given an oracle that “compares” F with some constant c.

E.g) F(0) =9,F(1) =5,F(2) =6,F(3) =7 (Here,n = 2))
Suppose c = F(3) = 7.
Then, f(0)=0,f(1)=1,f2) =1,f(3) = 0.

Construct a Grover-Search-Problem instance, i.e., given a function f(x): {0,1}" - {0,1},

find a n-bit string x* such that f(x*) = 1 where the number of target strings, say t, is unknown.

= 0(y/N/t) calls to the oracle (in expectation).

E.g.) output = 2
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Minimum Searching

Given a function F(x):{0,1}" — R, find a n-bit string x* that minimizes F(x*).

- We are given an oracle that “compares” F with some constant c.

E.g) F(0) =9,F(1) =5,F(2) =6,F(3) =7 (Here,n = 2))
Suppose ¢ = F(2) = 6.
Then, f(0)=0,f(1)=1,f(2)=0,f(3) = 0.

Construct a Grover-Search-Problem instance, i.e., given a function f(x): {0,1}" - {0,1},

find a n-bit string x* such that f(x*) = 1 where the number of target strings, say t, is unknown.

= 0(y/N/t) calls to the oracle (in expectation).

E.g.) output =1
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Minimum Searching

Given a function F(x):{0,1}" — R, find a n-bit string x* that minimizes F(x*).

- We are given an oracle that “compares” F with some constant c.

E.g) F(0) =9,F(1) =5,F(2) =6,F(3) =7 (Here,n = 2))
Suppose ¢ = F(1) = 5.
Then, f(0) =0,f(1)=0,f(2) =0,f(3) =0.
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Minimum Searching

Given a function F(x):{0,1}" — R, find a n-bit string x* that minimizes F(x*).

- We are given an oracle that “compares” F with some constant c.

Step 1. Pick an index j uniformly at random among {0,1,:--, N — 1}

Step 2. Repeat the following until the total running time is more than ©(vVN):

Let Of be the comparison oracle with ¢ = F(j)
Construct a Grover-Search-Problem instance and run the algorithm.

Let j' be the output. Update j to j' if F(j') < F(j).

Theorem (Dirr and Hayer, 1996).

This algorithm finds the index of the minimum value of F with probability at least % and runs in 8(vN).
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Minimum Searching with Different Types

Given a function F(x):{0,1}" - R and an onto function type(x): {0,1}"* - {1,2,---,d},

find {x}, -, x5} where x; = argmingype(=; F(x) for each type i = 1,2, -, d.
Naive application of the previous algorithm - run d times for each type, having ©(dvN) running time.

Theorem (Durr et al.. 2006).

There is an algorithm solves the problem with probability at least % and runs in 0(VdN).
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Minimum Spanning Tree

Quantumize the classical (Boruvka's algorithm) MST algorithm

input : Adjacency list-array implementation of undirected ¢ = (V, E) with cost function c: E - R
Initialization 7 = {{13,{2}, -, {IV[}}

Repeat until [T| = 1:

Let T = {T4, -~,Tk}.|Find ey, , e Where e; is a minimum cost edge leaving Tl-.I
Merge T; and e; for each i and update T'.

Return T;

Step 0: The Step 1: Bunch of Step 2: Start Connecting
Graph unconnected trees Repeat till all vertices are connected

Result: The MST

https://www.baeldung.com/java-boruvka-algorithm




Minimum Spanning Tree

Quantumize the classical (Boruvka's algorithm) MST algorithm
input : Adjacency list-array implementation of undirected ¢ = (V, E) with cost function c: E - R
Initialization 7 = {{13,{2}, -, {IV[}}
Repeat until [T| = 1:
Let T = {T4, -~,Tk}.|Find ey, +, e, Where e; is a minimum cost edge Ieavingil

Merge T; and e; for each i and update T'.

Return T;

Consider the directed version of the graph, i.e., (u,v) = (u, v), (v, u)

F((u,v)) = c¢((w,v)) if (u,v) is leaving some tree and F((», v)) = o if not.

type({u,v)) =i such thatu € T;

Then, apply the algorithm for the Minimum Searching with Different Types (with more queries).
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Minimum Spanning Tree

Letn = |V]| and m = |E].
On ¢t" iteration, queries (£ + 2)0(¥mk) times.

#of queries
- Observe that k < n/2¢1,

Z({’ +2)0(Vmk) < Z(f + 2)0( 2";1) = 0(ynm)

221 21

Error probability at most

1

2€+2
£>1

<

Ny
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Other applications

Connectivity

Network flow problem. (Finding Max Flow)
Matching on graph

Graph coloring

3-SAT

approximation algorithms
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Thank you
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