Grover's Algorithm and its application

Presenter: Changyeol Lee

Department of Computer Science, Yonsei University

Combinatorial Optimization Lab

Given a function $f(x)$: {0,1}ⁿ \rightarrow {0,1}, find a *n*-bit string x^{*} such that $f(x^*) = 1$.

Let $N = 2^n$.

Requires $O(N)$ function calls in the classical model.

Grover's Algorithm (1996)

Requires $\Theta(\sqrt{N})$ function calls in the quantum model.

Recap

Presented by Changyeol Lee

Complex number. $z = a + bi$ where a and b are real numbers.

- $-a = Re(z)$ is the *real part* of z
- $-b = Im(z)$ is the *imaginary part* of z
- $-z^* \coloneqq a bi$ is the *conjugate* of z.

- $|z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{a^2 + b^2}$ is the *magnitude* of z.

Observation. $|z|^2 = (a + bi)(a - bi) = z^*z$.

Recap – qubit

The *Qubit* (short for *quantum bit*). $|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$

where α and β are complex numbers such that $|\alpha|^2 + |\beta|^2 = 1$.

Superposition. Measuring $|\phi\rangle$ will yield either zero w/ probability $|\alpha|^2$ or one w/ probability $|\beta|^2$.

The state of the qubit $\ket{\phi}$ is two-dimensional complex vector $\binom{\alpha}{\beta}.$

 $\phi| \coloneqq (\alpha - \beta)^* = (\alpha^* - \beta^*)$, i.e., the conjugate transpose of $\binom{\alpha}{\beta}$.

Systems of Qubit. (Tensor product or Kronecker product)

$$
|\phi_1 \phi_2\rangle = |\phi_1\rangle \otimes |\phi_2\rangle = {\alpha_1 \choose \beta_1} \otimes {\alpha_2 \choose \beta_2} = {\alpha_1 \alpha_2 \choose \beta_1 \alpha_2} = \alpha_1 \alpha_2 |00\rangle + \alpha_1 \beta_2 |01\rangle + \beta_1 \alpha_2 |10\rangle + \beta_1 \beta_2 |11\rangle
$$

The state below is *entangled* i.e., not separable.

$$
|\phi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)
$$

The state $\ket{\phi'} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ (|01) + |11)) is not entangled. Since

$$
|\phi'\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |1\rangle
$$

Inner product. $\langle \phi_1 | \phi_2 \rangle = (\alpha_1 \ \beta_1)^* \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix}$ $\begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} = \alpha_1^* \alpha_2 + \beta_1^* \beta_2$ where $(\alpha_1 \ \beta_1)^* = (\alpha_1^* \ \beta_1^*).$

Outer product. $|\phi_1\rangle\langle\phi_2|$ = α_1 β_1 $\alpha_2 \quad \beta_2)^* =$ $\alpha_1 \alpha_2^* \quad \alpha_1 \beta_2^*$ $\beta_1 \alpha_2^*$ $\beta_1 \beta_2^*$ $|\phi_1\rangle\langle\phi_2|$: a matrix with mapping $|\phi_1\rangle \rightarrow |\phi_2\rangle$

Exercise (expressing matrix).

```
- |0\rangle\langle 0| - |1\rangle\langle 1| =1 0
                         0 -1= Mapping \{|0\rangle \rightarrow |0\rangle, |1\rangle \rightarrow -|1\rangle\}-|00\rangle\langle00|+|01\rangle\langle01|+|10\rangle\langle11|+|11\rangle\langle10|=1 0
                                                                            0 1
                                                                                         0 0
                                                                                         0 0
                                                                            0 0
                                                                            0 0
                                                                                         0 1
                                                                                         1 0
    = Mapping \{ |00\rangle \rightarrow |00\rangle, |01\rangle \rightarrow |01\rangle, |10\rangle \rightarrow |11\rangle, |11\rangle \rightarrow |10\rangle \}
```
Unitary Matrix. The matrix *U* is unitary if $UU^{\dagger} = U^{\dagger}U = I$ where U^{\dagger} is the transposed conjugate of *U*. - $U^{\dagger} \coloneqq U^{*T}$ is sometimes called Hermitian conjugate matrix or adjoint matrix.

Unitary Transformation. Change of the state is done by a series of unitary transformations. Basic unitary transformations are called *gates*.

Unitarity implies

- 1. #input qubits = $\#$ output qubits
- 2. Reversible

Not. NOT =
$$
X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

- $\alpha|0\rangle + \beta|1\rangle \rightarrow \beta|0\rangle + \alpha|1\rangle$

$$
Hadamard. H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
$$

Exercise.

$$
- \hspace{.08cm} |0\rangle \longrightarrow \hspace{.08cm} \frac{|0\rangle + |1\rangle}{\sqrt{2}}
$$

$$
- |1\rangle \longrightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}
$$

Recap – common gates (multi-qubit gates)

Controlled-NOT. CNOT =
$$
\begin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ \end{pmatrix}
$$

 $- \alpha_1 \alpha_2 |00\rangle + \alpha_1 \beta_2 |01\rangle + \beta_1 \alpha_2 |10\rangle + \beta_1 \beta_2 |11\rangle \rightarrow \alpha_1 \alpha_2 |00\rangle + \alpha_1 \beta_2 |01\rangle + \beta_1 \beta_2 |10\rangle + \beta_1 \alpha_2 |11\rangle$

Observe. CNOT =
$$
|00\rangle\langle00| + |01\rangle\langle01| + |10\rangle\langle11| + |11\rangle\langle10| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}
$$

Recap – applying transformations

 $CNOT(H \otimes I)$

1.
$$
(H \otimes I)(|0\rangle \otimes |0\rangle) = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |0\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}
$$

2. $CNOT \frac{|00\rangle + |10\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} (CNOT|00\rangle + CNOT|10\rangle) = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$

Bell state $|\beta_{00}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$ $\frac{1}{2}$. (Note that its state is entangled.)

Quantum Oracle

Given a function $f(x)$: {0,1}ⁿ \rightarrow {0,1}, find a *n*-bit string x^{*} such that $f(x^*) = 1$.

Let $N = 2^n$.

Requires $O(N)$ function calls in the classical model.

Grover's Algorithm

Requires $\Theta(\sqrt{N})$ function calls in the quantum model.

"Function" should be something like a quantum gate... and note that it must be **unitary**...

Suppose we are given a black box unary function $f(x): \{0,1\}^n \rightarrow \{0,1\}$.

Using this black box, one can build a new (unitary) gate that

- takes $(n + 1)$ -bits in and $(n + 1)$ -bits out,
- computes f when proper input is given, and
- has the same computational complexity.

How?

$$
|x\rangle|y\rangle \xrightarrow{U_f} |x\rangle|f(x) \oplus y\rangle
$$

where ⊕ is integer mod-2.

Quantum Oracle for Unary Function

0 0

1 0

 σ_x : Pauli matrix

Unitary?

• A square matrix is unitary if it can be broken down into smaller unitary matrices along its diagonal.

Suppose we are given a unary function $f(x): \{0,1\}^n \rightarrow \{0,1\}.$

Consider when $x = 00 \cdots 0$.

Suppose we are given a unary function $f(x): \{0,1\}^n \rightarrow \{0,1\}.$

Consider when $x = 00 \cdots 0$.

When $f(x) = 0$, U_f looks like

Suppose we are given a unary function $f(x): \{0,1\}^n \rightarrow \{0,1\}.$

Consider when $x = 00 \cdots 0$.

$$
|x\rangle|y\rangle \xrightarrow{U_f} |x\rangle|f(x) \oplus y\rangle
$$

When $f(x) = 1$, U_f looks like

Quantum Oracle for Unary Function

Suppose we are given a unary function $f(x): \{0,1\}^n \rightarrow \{0,1\}.$

x $||y$ U_f x)| $f(x) \oplus y$

Then U_f looks like

and it is unitary.

Relativized Time Complexity

- The time complexity without knowledge of the oracle's design. (If we allow small error, no speed-up.)
- Deutsch-Jozsa's algorithm offers a deterministic exponential speed-up *relative to the oracle.*
- Bernstein-Vazirani's algorithm offers a polynomial speed-up *relative to the oracle.* (even if small error is allowed)

Absolute Time Complexity

- The time complexity with knowledge of the oracle's design
- Shor's algorithm provides absolute speed-up.

Given a function $f(x)$: {0,1}ⁿ \rightarrow {0,1}, find the *n*-bit target string x^{*} such that $f(x^*) = 1$.

Let $N = 2^n$.

Requires $O(N)$ function calls in the classical model.

Given a quantum oracle \bm{o}_{f} , find a (n-bit) target string \bm{x}^* .

Grover's Algorithm. Requires $\Theta(\sqrt{N})$ calls to the quantum oracle.

Let $|\psi\rangle \coloneqq \frac{1}{\sqrt{2}}$ $\frac{1}{N}$ ($\ket{00\cdots00}$ + $\ket{00\cdots01}$ + $\ket{00\cdots10}$ + \cdots + $\ket{11\cdots11}$) be the uniform superposition. (Shorthand) $|\psi\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{N}\sum_{i=0}^{N-1} |i\rangle = \frac{1}{\sqrt{l}}$ $\frac{1}{N}\sum_i|i$ Grover operator $G := ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$ The action of 2 $|\psi\rangle\langle\psi| - I_N$ on an arbitrary state $|\phi\rangle = \sum_i a_i |i\rangle =$ a_0 a_1 $\ddot{\cdot}$ a_{N-1} $2|\psi\rangle\langle\psi| - I_N)|\phi\rangle = \sum_{\alpha} (2$ i $a_0 + \cdots + a_{N-1}$ \overline{N} $- a_i | |i\rangle$ $\psi \rangle \langle \psi | =$ 1 \overline{N} 1 1 1 1 1 1 1 1 1 … … … 1 1 1 \vdots \vdots \vdots \vdots 1 1 1 ⋯ 1 $I_N =$ 1 0 0 0 1 0 0 0 1 … … … 0 0 0 \vdots \vdots \ddots \vdots 0 0 0 ⋯ 1 $I_2 =$ 1 0 0 1

Step 1. Perform state initialization

- $-$ (*n* qubits) $|00 \cdots 0\rangle \rightarrow \frac{1}{\sqrt{n}}$ \boldsymbol{N} $00 \cdots 00$ + $|00 \cdots 01$ + $|00 \cdots 10$ + \cdots + $|11 \cdots 11$
- (ancillary qubit) $|0\rangle \rightarrow \frac{|0\rangle |1\rangle}{\sqrt{2}}$ 2

Step 2. Apply Grover operator $\left|\frac{{\pi\sqrt{N}}}{4}\right|$ times

Step 3. Perform measurement on all qubit (except the ancillary qubit)

Step 1. Initialization

Step 1. intialization
\n
$$
q_0
$$
 |0⟩ \overline{H} $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$
\n q_1 |0⟩ \overline{H} $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$
\n \vdots \vdots \vdots \vdots
\n q_{n-2} |0⟩ \overline{H} $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ $\frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes \cdots \otimes \frac{|0\rangle+|1\rangle}{\sqrt{2}}$
\n q_{n-1} |0⟩ \overline{H} $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ $\frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes \cdots \otimes \frac{|0\rangle+|1\rangle}{\sqrt{2}}$
\n $= \frac{1}{\sqrt{N}}(|00\cdots00\rangle+|00\cdots01\rangle+|00\cdots10\rangle+\cdots+|11\cdots11\rangle)$
\nancilla |0⟩ \overline{X} \overline{H} $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$

$$
\frac{1}{\sqrt{N}}\left(|00\cdots00\rangle+|00\cdots01\rangle+|00\cdots10\rangle+\cdots+|11\cdots1\rangle\right)\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

Presented by Changyeol Lee

Step 2. Apply $G := ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$

 $|x\rangle|q\rangle \rightarrow |x\rangle|f(x) \oplus q\rangle$

$$
O_f\left(\frac{1}{\sqrt{N}}(|00 \cdots 00\rangle + |00 \cdots 01\rangle + \cdots + |x^*\rangle + \cdots + |11 \cdots 11\rangle) \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)
$$

= $\frac{1}{\sqrt{N}}\left(O_f\left(|00 \cdots 00\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) + \cdots + O_f\left(|x^*\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) + \cdots + O_f\left(|11 \cdots 11\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)\right)$
= $O_f \frac{|x^*\rangle|0\rangle - |x^*\rangle|1\rangle}{\sqrt{2}} = \frac{O_f(|x^*\rangle|0\rangle) - O_f(|x^*\rangle|1\rangle)}{\sqrt{2}}$
= $\frac{|x^*\rangle|1\rangle - |x^*\rangle|0\rangle}{\sqrt{2}}$
= $|x^*\rangle \otimes \frac{|1\rangle - |0\rangle}{\sqrt{2}}$

Presented by Changyeol Lee

Step 2. Apply $G := ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$

$$
|x\rangle|q\rangle \longrightarrow |x\rangle|f(x) \oplus q\rangle
$$

$$
O_f\left(\frac{1}{\sqrt{N}}(|00 \cdots 00\rangle + |00 \cdots 01\rangle + \cdots + |x^*\rangle + \cdots + |11 \cdots 11\rangle) \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)
$$

= $\frac{1}{\sqrt{N}}\left(O_f\left(|00 \cdots 00\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) + \cdots + O_f\left(|x^*\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) + \cdots + O_f\left(|11 \cdots 11\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)\right)$
= $\frac{1}{\sqrt{N}}\left(|00 \cdots 00\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} + \cdots + |x^*\rangle \otimes \frac{-|0\rangle + |1\rangle}{\sqrt{2}} + \cdots + |11 \cdots 11\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$
= $\frac{1}{\sqrt{N}}(|00 \cdots 00\rangle + |00 \cdots 01\rangle + \cdots + (-1)|x^*\rangle + \cdots + |11 \cdots 11\rangle) \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

Step 2. Apply $G := ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$

$$
\left((2|\psi\rangle\langle\psi|-I_{N})\otimes I_{2}\right)\left(\frac{1}{\sqrt{N}}(|00\cdots00\rangle+|00\cdots01\rangle+\cdots+(-1)|x^{*}\rangle+\cdots+|11\cdots11\rangle)\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
$$

$$
= (2|\psi\rangle\langle\psi| - I_N) \left(\frac{1}{\sqrt{N}} (|00 \cdots 00\rangle + |00 \cdots 01\rangle + \cdots + (-1)|x^*\rangle + \cdots + |11 \cdots 11\rangle) \right) \otimes \left(I_2 \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)
$$

$$
= (2|\psi\rangle\langle\psi| - I_N) \left(\frac{1}{\sqrt{N}} (|00 \cdots 00\rangle + |00 \cdots 01\rangle + \cdots + (-1)|x^*\rangle + \cdots + |11 \cdots 11\rangle) \right) \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}
$$

Step 2. Apply
$$
G := ((2|\psi)(\psi| - I_N) \otimes I_2)O_f
$$

\n
$$
(2|\psi)(\psi| - I_N) \underbrace{\left(\frac{1}{\sqrt{N}}(|00 \cdots 00\rangle + |00 \cdots 01\rangle + \cdots + (-1)|x^*\rangle + \cdots + |11 \cdots 11\rangle)\right)}_{=\sqrt{N-2}}
$$
\n
$$
= \left(\frac{2}{N}\frac{N-2}{\sqrt{N}} - \frac{1}{\sqrt{N}}\right)|00 \cdots 00\rangle + \cdots + \left(\frac{2}{N}\frac{N-2}{\sqrt{N}} + \frac{1}{\sqrt{N}}\right)|x^*\rangle + \cdots + \left(\frac{2}{N}\frac{N-2}{\sqrt{N}} - \frac{1}{\sqrt{N}}\right)|11 \cdots 11\rangle
$$
\n
$$
= \frac{1}{\sqrt{N}}\left(\frac{N-4}{N}|00 \cdots 00\rangle + \cdots + \frac{3N-4}{N}|x^*\rangle + \cdots + \frac{N-4}{N}|11 \cdots 11\rangle\right)
$$
\namplified

Step 2. Apply $G := ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$ again

$$
|x\rangle|q\rangle \longrightarrow |x\rangle|f(x) \oplus q\rangle
$$

$$
O_f\left(\frac{1}{\sqrt{N}}\left(\frac{N-4}{N}\left|00\cdots00\right\rangle + \cdots + \frac{3N-4}{N}\left|x^*\right\rangle + \cdots + \frac{N-4}{N}\left|11\cdots11\right\rangle\right)\otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)
$$

=
$$
\frac{1}{\sqrt{N}}\left(\frac{N-4}{N}\left|00\cdots00\right\rangle + \cdots + (-1)\frac{3N-4}{N}\left|x^*\right\rangle + \cdots + \frac{N-4}{N}\left|11\cdots11\right\rangle\right)\otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}
$$

flipped

Step 2. Apply $G := ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$ again

$$
(2|\psi\rangle\langle\psi| - I_N)|\phi\rangle = \sum_i \left(\frac{2}{N}(a_0 + \dots + a_{N-1}) - a_i\right)|i\rangle
$$

$$
(2|\psi\rangle\langle\psi| - I_N) \left(\frac{1}{\sqrt{N}} \left(\frac{N-4}{N} |00 \cdots 00\rangle + \cdots + (-1) \frac{3N-4}{N} |x^*\rangle + \cdots + \frac{N-4}{N} |11 \cdots 11\rangle \right) \right)
$$

$$
= \frac{1}{\sqrt{N}} \left(\frac{N^2 - 12N + 16}{N^2} |00 \cdots 00\rangle + \cdots + \frac{5N^2 - 20N + 16}{N^2} |x^*\rangle + \cdots + \frac{N^2 - 12N + 16}{N^2} |11 \cdots 11\rangle \right)
$$

more amplified

Step 2. Apply G fixed amount

(informally)
$$
\frac{1}{\sqrt{N}} (\epsilon |00 \cdots 00\rangle + \cdots + (\sqrt{N} - \epsilon') |x^*\rangle + \cdots + \epsilon |11 \cdots 11\rangle)
$$

amplified a lot

for some small ϵ, ϵ' .

Step 3. Measurement

(informally)
$$
\frac{1}{\sqrt{N}} (\epsilon |00 \cdots 00\rangle + \cdots + (\sqrt{N} - \epsilon') |x^*\rangle + \cdots + \epsilon |11 \cdots 11\rangle)
$$

Obtain $|x^*\rangle$ with probability close to 1.

Analysis

Presented by Changyeol Lee

Why applying Grover operator (exactly) $\left|\frac{{\pi\sqrt{N}}}{4}\right|$ times?

Let
$$
|\omega\rangle = \frac{1}{\sqrt{N-1}} (\sum_i |i\rangle - |x^*\rangle)
$$

Note that $|\omega\rangle$ and $|x^*\rangle$ are orthonormal.

Note. After the step 1, the state is

$$
\frac{1}{\sqrt{N}}\left(|00\cdots00\rangle+|00\cdots01\rangle+|00\cdots10\rangle+\cdots+|11\cdots1\rangle\right)
$$

$$
= \frac{\sqrt{N-1}}{\sqrt{N}} |\omega\rangle + \frac{1}{\sqrt{N}} |x^*\rangle
$$

= cos θ |ω\rangle + sin θ |x^*\rangle

 $=$ cos θ |ω $+$ sin θ |x^{*}

Presented by Changyeol Lee

Applying $(2|\psi\rangle\langle\psi| - I_N)$ = Reflection about $|\psi\rangle$

inner product $\langle \psi || \psi^{\perp} \rangle = 0$

After applying k times,

 $\cos(\theta + 2k\theta) \, |\omega\rangle + \sin(\theta + 2k\theta) \, |x^*$

Recall
$$
\frac{\sqrt{N-1}}{\sqrt{N}}|\omega\rangle + \frac{1}{\sqrt{N}}|x^*\rangle = \cos\theta |\omega\rangle + \sin\theta |x^*\rangle
$$
.

$$
-\theta = \arccos \sqrt{\frac{N-1}{N}}
$$

Find *k* that maximizes
$$
\sin^2(\theta + 2k\theta) = \sin^2\left((2k + 1)\arccos\sqrt{\frac{N-1}{N}}\right)
$$

or find k such that $\frac{\pi}{2}$ $\sim (2k+1)$ arccos $\sqrt{\frac{N-1}{N}}$ \boldsymbol{N}

$$
k_{optimal} = \frac{\pi}{4}\sqrt{N} - \frac{1}{2} - O(\sqrt{1/N})
$$

Applications

Presented by Changyeol Lee

Factor an integer $M = p \times q$ into p and q where p and q are primes (2^{2n–1} $\leq M < 2^{2n}$ for some $n)$ WLOG, $p \leq \sqrt{M} < 2^n$.

Given a function $f(x)$ that outputs 1 if $x = p$; 0 otherwise Given a function $f(x)$: {0,1}ⁿ \rightarrow {0,1}, find the target string p.

Grover's Algorithm.

Requires $\frac{\pi}{4}$ $\overline{N}-\frac{1}{2}$ $\frac{1}{2} - O(\sqrt{1/N})$ calls to the quantum oracle. ($N = 2^n$

Shor's algorithm runs in $O(n^3\log n)$ times, using $O(n^2\log n\log\log n)$ gates.

If there are t number of target strings, by calling $k_{optimal} = \frac{\pi}{4}$ 4 $\overline{N/t} - \frac{1}{2}$ 2 $- O(\sqrt{t/N})$

or $\Theta(\sqrt{N/t})$ calls to the oracle, we can find a target string.

What if the number of target strings t is unknown?

Theorem (Boyer et al., 1996).

There is an (randomized) algorithm that find a target string in expected time in $O(\sqrt{N/t})$.

Given a function $F(x): \{0,1\}^n \to \mathbb{R}$, find a n-bit string x^{*} that minimizes $F(x^*)$.

- We are given an oracle that "compares" F with some constant c .

E.g.) $F(0) = 9, F(1) = 5, F(2) = 6, F(3) = 7$ (Here, $n = 2$.) Suppose $c = F(3) = 7$. Then, $f(0) = 0, f(1) = 1, f(2) = 1, f(3) = 0.$

Construct a Grover-Search-Problem instance, i.e., given a function $f(x): \{0,1\}^n \rightarrow \{0,1\}$, find a *n*-bit string x^{*} such that $f(x^*) = 1$ where the number of target strings, say t, is unknown. $\Rightarrow O(\sqrt{N/t})$ calls to the oracle (in expectation).

 $E.q.$) output = 2

Given a function $F(x): \{0,1\}^n \to \mathbb{R}$, find a n-bit string x^{*} that minimizes $F(x^*)$.

- We are given an oracle that "compares" F with some constant c .

E.g.) $F(0) = 9, F(1) = 5, F(2) = 6, F(3) = 7$ (Here, $n = 2$.) Suppose $c = F(2) = 6$. Then, $f(0) = 0, f(1) = 1, f(2) = 0, f(3) = 0.$

Construct a Grover-Search-Problem instance, i.e., given a function $f(x): \{0,1\}^n \rightarrow \{0,1\}$, find a *n*-bit string x^{*} such that $f(x^*) = 1$ where the number of target strings, say t, is unknown. $\Rightarrow O(\sqrt{N/t})$ calls to the oracle (in expectation).

 $E.g.$) output = 1

…

Given a function $F(x): \{0,1\}^n \to \mathbb{R}$, find a n-bit string x^{*} that minimizes $F(x^*)$.

- We are given an oracle that "compares" F with some constant c .

E.g.) $F(0) = 9, F(1) = 5, F(2) = 6, F(3) = 7$ (Here, $n = 2$.) Suppose $c = F(1) = 5$. Then, $f(0) = 0, f(1) = 0, f(2) = 0, f(3) = 0.$

Given a function $F(x): \{0,1\}^n \to \mathbb{R}$, find a n-bit string x^{*} that minimizes $F(x^*)$.

- We are given an oracle that "compares" F with some constant c .

Step 1. Pick an index *j* uniformly at random among $\{0,1,\dots,N-1\}$

Step 2. Repeat the following until the total running time is more than $\Theta(\sqrt{N})$:

Let O_f be the comparison oracle with $c = F(j)$

Construct a Grover-Search-Problem instance and run the algorithm.

Let *j'* be the output. Update *j* to *j'* if $F(j') < F(j)$.

Theorem (Dürr and Høyer, 1996).

This algorithm finds the index of the minimum value of F with probability at least $\frac{1}{2}$ and runs in $\Theta(\sqrt{N})$.

Minimum Searching with Different Types

Given a function $F(x): \{0,1\}^n \to \mathbb{R}$ and an onto function type(x): $\{0,1\}^n \to \{1,2,\cdots,d\}$, find $\{x_1^*, \dots, x_d^*\}$ where $x_i^* = \operatorname{argmin}_{type(x)=i} F(x)$ for each type $i = 1, 2, \dots, d$.

Naïve application of the previous algorithm – run d times for each type, having $\Theta(d\sqrt{N})$ running time.

Theorem (Dürr et al., 2006).

There is an algorithm solves the problem with probability at least $\frac{1}{2}$ and runs in $O(\sqrt{dN})$.

Minimum Spanning Tree

Quantumize the classical (Boruvka's algorithm) MST algorithm

input : Adjacency list-array implementation of undirected $G = (V, E)$ with cost function $c: E \to \mathbb{R}$

Initialization $T = \{ \{1\}, \{2\}, \cdots, \{|V|\} \}$

Repeat until $|\mathcal{T}| = 1$:

Let $\mathcal{T} = \{T_1, \cdots, T_k\}$. Find e_1, \cdots, e_k where e_i is a minimum cost edge leaving T_i .

Merge T_i and e_i for each i and update $\mathcal{T}.$

Quantumize the classical (Boruvka's algorithm) MST algorithm

input : Adjacency list-array implementation of undirected $G = (V, E)$ with cost function $c: E \to \mathbb{R}$

Initialization $T = \{ \{1\}, \{2\}, \cdots, \{|V|\} \}$

Repeat until $|\mathcal{T}| = 1$:

Let $\mathcal{T} = \{T_1, \cdots, T_k\}$. Find e_1, \cdots, e_k where e_i is a minimum cost edge leaving T_i .

Merge T_i and e_i for each i and update $\mathcal{T}.$

Return T_1

Consider the directed version of the graph, i.e., $(u, v) \rightarrow (u, v)$, $\langle v, u \rangle$

$$
F(\langle u, v \rangle) = c((u, v))
$$
 if $\langle u, v \rangle$ is leaving some tree and $F(\langle u, v \rangle) = \infty$ if not.

 $type((u, v)) = i$ such that $u \in T_i$

Then, apply the algorithm for the Minimum Searching with Different Types (with *more* queries).

Let $n = |V|$ and $m = |E|$.

On ℓ^{th} iteration, queries $(\ell + 2) O(\sqrt{mk})$ times.

#of queries

- Observe that $k \leq n/2^{\ell-1}$.

$$
\sum_{\ell \ge 1} (\ell+2) O\big(\sqrt{mk}\big) \le \sum_{\ell \ge 1} (\ell+2) O\bigg(\sqrt{\frac{mn}{2^{\ell-1}}}\bigg) = O\big(\sqrt{nm}\big)
$$

Error probability at most

Connectivity

Network flow problem. (Finding Max Flow)

Matching on graph

Graph coloring

3-SAT

 \vdots

approximation algorithms

Thank you