Grover's Algorithm and its application

Presenter: Changyeol Lee

Department of Computer Science, Yonsei University

Combinatorial Optimization Lab

Given a function $f(x): \{0,1\}^n \to \{0,1\}$, find a *n*-bit string x^* such that $f(x^*) = 1$.

Let $N = 2^n$.

Requires O(N) function calls in the classical model.

Grover's Algorithm (1996)

Requires $\Theta(\sqrt{N})$ function calls in the quantum model.

Recap

Presented by Changyeol Lee

Complex number. z = a + bi where a and b are real numbers.

- -a = Re(z) is the *real part* of z
- -b = Im(z) is the *imaginary part* of z
- $-z^* \coloneqq a bi$ is the *conjugate* of z.

 $|z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{a^2 + b^2}$ is the *magnitude* of z.

Observation. $|z|^2 = (a + bi)(a - bi) = z^*z$.

Recap – qubit

The *Qubit* (short for *quantum bit*). $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$

where α and β are complex numbers such that $|\alpha|^2 + |\beta|^2 = 1$.

Superposition. Measuring $|\phi\rangle$ will yield either zero w/ probability $|\alpha|^2$ or one w/ probability $|\beta|^2$.

The state of the qubit $|\phi\rangle$ is two-dimensional complex vector $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.

 $\langle \phi | \coloneqq (\alpha \quad \beta)^* = (\alpha^* \quad \beta^*)$, i.e., the conjugate transpose of $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.

Recap – systems of qubit

Systems of Qubit. (Tensor product or Kronecker product)

$$|\phi_{1}\phi_{2}\rangle = |\phi_{1}\rangle \otimes |\phi_{2}\rangle = \begin{pmatrix} \alpha_{1} \\ \beta_{1} \end{pmatrix} \otimes \begin{pmatrix} \alpha_{2} \\ \beta_{2} \end{pmatrix} = \begin{pmatrix} \alpha_{1}\alpha_{2} \\ \alpha_{1}\beta_{2} \\ \beta_{1}\alpha_{2} \\ \beta_{1}\beta_{2} \end{pmatrix} = \alpha_{1}\alpha_{2}|00\rangle + \alpha_{1}\beta_{2}|01\rangle + \beta_{1}\alpha_{2}|10\rangle + \beta_{1}\beta_{2}|11\rangle$$

The state below is *entangled* i.e., not separable.

$$|\phi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

The state $|\phi'\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |11\rangle)$ is not entangled. Since

$$|\phi'\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |1\rangle$$

Inner product. $\langle \phi_1 | \phi_2 \rangle = (\alpha_1 \quad \beta_1)^* {\alpha_2 \choose \beta_2} = \alpha_1^* \alpha_2 + \beta_1^* \beta_2$ where $(\alpha_1 \quad \beta_1)^* = (\alpha_1^* \quad \beta_1^*)$.

Outer product. $|\phi_1\rangle\langle\phi_2| = \begin{pmatrix} \alpha_1\\ \beta_1 \end{pmatrix}(\alpha_2 \quad \beta_2)^* = \begin{pmatrix} \alpha_1\alpha_2^* & \alpha_1\beta_2^*\\ \beta_1\alpha_2^* & \beta_1\beta_2^* \end{pmatrix} \qquad |\phi_1\rangle\langle\phi_2|$: a <u>matrix</u> with mapping $|\phi_1\rangle \to |\phi_2\rangle$

Exercise (expressing matrix).

$$|0\rangle\langle 0| - |1\rangle\langle 1| = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

= Mapping { $|0\rangle \rightarrow |0\rangle$, $|1\rangle \rightarrow -|1\rangle$ }
$$|00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 11| + |11\rangle\langle 10| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

= Mapping { $|00\rangle \rightarrow |00\rangle$, $|01\rangle \rightarrow |01\rangle$, $|10\rangle \rightarrow |11\rangle$, $|11\rangle \rightarrow |10\rangle$ }

Unitary Matrix. The matrix U is unitary if $UU^{\dagger} = U^{\dagger}U = I$ where U^{\dagger} is the transposed conjugate of U.

- $U^{\dagger} \coloneqq U^{*T}$ is sometimes called Hermitian conjugate matrix or adjoint matrix.

Unitary Transformation. Change of the state is done by a series of unitary transformations. Basic unitary transformations are called *gates*.

Unitarity implies

- 1. #input qubits = #output qubits
- 2. Reversible

Not. NOT =
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- $\alpha |0\rangle + \beta |1\rangle \rightarrow \beta |0\rangle + \alpha |1\rangle$

Hadamard.
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Exercise.

$$|0\rangle \longrightarrow \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

$$|1\rangle \longrightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

Recap – common gates (multi-qubit gates)

Controlled-NOT. CNOT =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

 $-\alpha_1\alpha_2|00\rangle + \alpha_1\beta_2|01\rangle + \beta_1\alpha_2|10\rangle + \beta_1\beta_2|11\rangle \longrightarrow \alpha_1\alpha_2|00\rangle + \alpha_1\beta_2|01\rangle + \beta_1\beta_2|10\rangle + \beta_1\alpha_2|11\rangle$

Observe. CNOT =
$$|00\rangle\langle00| + |01\rangle\langle01| + |10\rangle\langle11| + |11\rangle\langle10| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Recap – applying transformations

 $CNOT(H \otimes I)$

1.
$$(H \otimes I)(|0\rangle \otimes |0\rangle) = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |0\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}$$

2. $CNOT \frac{|00\rangle + |10\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} (CNOT|00\rangle + CNOT|10\rangle) = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$

Bell state $|\beta_{00}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$. (Note that its state is entangled.)

Quantum Oracle

Given a function $f(x): \{0,1\}^n \to \{0,1\}$, find a *n*-bit string x^* such that $f(x^*) = 1$.

Let $N = 2^n$.

Requires O(N) function calls in the classical model.

Grover's Algorithm

Requires $\Theta(\sqrt{N})$ function calls in the quantum model.

"Function" should be something like a quantum gate... and note that it must be unitary...

Suppose we are given a black box unary function $f(x): \{0,1\}^n \rightarrow \{0,1\}$.

Using this black box, one can build a new (unitary) gate that

- takes (n + 1)-bits in and (n + 1)-bits out,
- computes *f* when proper input is given, and
- has the same computational complexity.

How?

$$|\mathbf{x}\rangle|y\rangle \xrightarrow{U_f} |\mathbf{x}\rangle|f(\mathbf{x}) \oplus y\rangle$$

where \oplus is integer mod-2.

Quantum Oracle for Unary Function

Suppose we are given	a constant function $f(x): \{0,1\} \rightarrow 1$.		
		$ x\rangle y\rangle$	$U_f(x\rangle y\rangle)$
U_f	0> 0>	$ 0\rangle 1\rangle$	
	$ \mathbf{x}\rangle \mathbf{y}\rangle \longrightarrow \mathbf{x}\rangle 1 \oplus \mathbf{y}\rangle$	$ 0\rangle 1\rangle$	0> 0>
		$ 1\rangle 0\rangle$	$ $ $ 1\rangle 1\rangle$
		$ 1\rangle 1\rangle$	$ 1\rangle 0\rangle$
How does <i>U_f</i> look?	$ 00\rangle\langle01 + 01\rangle\langle00 + 10\rangle\langle11 + 11\rangle\langle10 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$ \begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} $ $ \sigma_x: [$	Pauli matrix

Unitary?

• A square matrix is unitary if it can be broken down into smaller unitary matrices along its diagonal.

Suppose we are given a unary function $f(x): \{0,1\}^n \rightarrow \{0,1\}$.

Consider when $x = 00 \cdots 0$.

$ \mathbf{x}\rangle \mathbf{y}\rangle \xrightarrow{U_f}$	$ \mathbf{x}\rangle f(\mathbf{x})\oplus\mathbf{y}\rangle$
--	---

$ \mathbf{x}\rangle y\rangle$	$f(\mathbf{x})$	$U_f(\mathbf{x}\rangle \mathbf{y}\rangle)$
$ 00\cdots0 angle 0 angle$	0	$ 00\cdots0 angle 0 angle$
$ 00\cdots0 angle 1 angle$	0	$ 00\cdots0 angle 1 angle$
$ 00\cdots0 angle 0 angle$	1	$ 00\cdots0 angle 1 angle$
$ 00\cdots0 angle 1 angle$	1	$ 00\cdots0\rangle 0\rangle$

Suppose we are given a unary function $f(x): \{0,1\}^n \rightarrow \{0,1\}$.

Consider when $x = 00 \cdots 0$.

$$|\mathbf{x}\rangle|y\rangle \xrightarrow{U_f} |\mathbf{x}\rangle|f(x) \oplus y\rangle$$

$ \mathbf{x}\rangle y\rangle$	$f(\mathbf{x})$	$U_f(\mathbf{x}\rangle y\rangle)$
$ 00\cdots0 angle 0 angle$	0	$ 00\cdots0\rangle 0\rangle$
$ 00\cdots0 angle 1 angle$	0	$ 00\cdots0 angle 1 angle$
$ 00\cdots0 angle 0 angle$	1	$ 00\cdots0 angle 1 angle$
$ 00\cdots0 angle 1 angle$	1	$ 00\cdots0 angle 0 angle$

When $f(\mathbf{x}) = 0$, U_f looks like

/1	0	2	
0	1	:	
0	0		
:	•	2	
•	•	:	
$\sqrt{0}$	0		/

Suppose we are given a unary function $f(x): \{0,1\}^n \rightarrow \{0,1\}$.

Consider when $x = 00 \cdots 0$.

$$|\mathbf{x}\rangle|\mathbf{y}\rangle \xrightarrow{U_f} |\mathbf{x}\rangle|f(\mathbf{x}) \oplus \mathbf{y}\rangle$$

$ \mathbf{x}\rangle y\rangle$	$f(\mathbf{x})$	$U_f(\mathbf{x}\rangle y\rangle)$
$ 00\cdots0 angle 0 angle$	0	$ 00\cdots0 angle 0 angle$
$ 00\cdots0 angle 1 angle$	0	$ 00\cdots0 angle 1 angle$
 00 … 0⟩ 0⟩	1	$ 00\cdots0 angle 1 angle$
$ 00\cdots0 angle 1 angle$	1	$ 00\cdots0 angle 0 angle$

When $f(\mathbf{x}) = 1$, U_f looks like

Quantum Oracle for Unary Function

Suppose we are given a unary function $f(x): \{0,1\}^n \rightarrow \{0,1\}$.

 $|\mathbf{x}\rangle|y\rangle \xrightarrow{U_f} |\mathbf{x}\rangle|f(x) \oplus y\rangle$

Then U_f looks like

and it is unitary.

Relativized Time Complexity

- The time complexity without knowledge of the oracle's design. (If we allow small error, no speed-up.)
- Deutsch-Jozsa's algorithm offers a deterministic exponential speed-up *relative to the oracle.*
- Bernstein-Vazirani's algorithm offers a polynomial speed-up relative to the oracle. (even if small error is allowed)

Absolute Time Complexity

- The time complexity **with** knowledge of the oracle's design
- Shor's algorithm provides *absolute* speed-up.

Given a function $f(x): \{0,1\}^n \to \{0,1\}$, find the *n*-bit target string x^* such that $f(x^*) = 1$.

Let $N = 2^n$.

Requires O(N) function calls in the classical model.

Given a quantum oracle O_f , find a (*n*-bit) target string x^* .

<u>Grover's Algorithm</u>. Requires $\Theta(\sqrt{N})$ calls to the quantum oracle.

Let $|\psi\rangle \coloneqq \frac{1}{\sqrt{N}}(|00\cdots00\rangle + |00\cdots01\rangle + |00\cdots10\rangle + \cdots + |11\cdots11\rangle)$ be the uniform superposition. (Shorthand) $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} |i\rangle = \frac{1}{\sqrt{N}} \sum_{i} |i\rangle$ $|\psi\rangle\langle\psi| = \frac{1}{N} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & 1 & 1 & \cdots & 1\\ 1 & 1 & 1 & \cdots & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix}$ Grover operator $G \coloneqq ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$ The action of $2|\psi\rangle\langle\psi| - I_N$ on an arbitrary state $|\phi\rangle = \sum_i a_i |i\rangle = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-1} \end{pmatrix}$ $I_N = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix}$ $(2|\psi\rangle\langle\psi|-I_N)|\phi\rangle = \sum \left(2\frac{a_0+\cdots+a_{N-1}}{N}-a_i\right)|i\rangle$ $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Step 1. Perform state initialization

- (n qubits)
$$|00\cdots0\rangle \rightarrow \frac{1}{\sqrt{N}}(|00\cdots00\rangle + |00\cdots01\rangle + |00\cdots10\rangle + \dots + |11\cdots11\rangle)$$

- (ancillary qubit) $|0\rangle \rightarrow \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

Step 2. Apply Grover operator $\left[\frac{\pi\sqrt{N}}{4}\right]$ times

Step 3. Perform measurement on all qubit (except the ancillary qubit)

Step 1. Initialization

Step 1. Initialization

$$q_{0} | 0 \rangle - H - \frac{|0 \rangle + |1}{\sqrt{2}}$$

$$q_{1} | 0 \rangle - H - \frac{|0 \rangle + |1}{\sqrt{2}}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$q_{n-2} | 0 \rangle - H - \frac{|0 \rangle + |1}{\sqrt{2}}$$

$$q_{n-1} | 0 \rangle - H - \frac{|0 \rangle + |1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{N}} (|00 \cdots 00\rangle + |00 \cdots 01\rangle + |00 \cdots 10\rangle + \dots + |11 \cdots 11\rangle)$$
ancilla |0 \rangle - X - H - \frac{|0 \rangle - |1}{\sqrt{2}}

$$\frac{1}{\sqrt{N}}(|00\cdots00\rangle + |00\cdots01\rangle + |00\cdots10\rangle + \dots + |11\cdots1\rangle) \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

Presented by Changyeol Lee

Step 2. Apply $G \coloneqq ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$

 $|\mathbf{x}\rangle|q\rangle \rightarrow |\mathbf{x}\rangle|f(\mathbf{x}) \oplus q\rangle$

$$\begin{split} O_f \left(\frac{1}{\sqrt{N}} (|00 \cdots 00\rangle + |00 \cdots 01\rangle + \cdots + |\mathbf{x}^*\rangle + \cdots + |11 \cdots 11\rangle) \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \\ &= \frac{1}{\sqrt{N}} \left(O_f \left(|00 \cdots 00\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) + \cdots + O_f \left(|\mathbf{x}^*\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) + \cdots + O_f \left(|11 \cdots 11\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \right) \\ &= O_f \frac{|\mathbf{x}^*\rangle|0\rangle - |\mathbf{x}^*\rangle|1\rangle}{\sqrt{2}} = \frac{O_f (|\mathbf{x}^*\rangle|0\rangle) - O_f (|\mathbf{x}^*\rangle|1\rangle)}{\sqrt{2}} \\ &= \frac{|\mathbf{x}^*\rangle \otimes \frac{|1\rangle - |0\rangle}{\sqrt{2}} \end{split}$$

Presented by Changyeol Lee

Step 2. Apply $G \coloneqq ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$

 $|\mathbf{x}\rangle|q\rangle \rightarrow |\mathbf{x}\rangle|f(\mathbf{x}) \oplus q\rangle$

$$\begin{split} &O_f\left(\frac{1}{\sqrt{N}}(|00\cdots00\rangle+|00\cdots01\rangle+\cdots+|\mathbf{x}^*\rangle+\cdots+|11\cdots11\rangle)\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\\ &=\frac{1}{\sqrt{N}}\left(O_f\left(|00\cdots00\rangle\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)+\cdots+O_f\left(|\mathbf{x}^*\rangle\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)+\cdots+O_f\left(|11\cdots11\rangle\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\right)\\ &=\frac{1}{\sqrt{N}}\left(|00\cdots00\rangle\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}+\cdots+|\mathbf{x}^*\rangle\otimes\frac{-|\mathbf{0}\rangle+|\mathbf{1}\rangle}{\sqrt{2}}+\cdots+|11\cdots11\rangle\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\\ &=\frac{1}{\sqrt{N}}(|00\cdots00\rangle+|00\cdots01\rangle+\cdots+(-\mathbf{1})|\mathbf{x}^*\rangle+\cdots+|11\cdots11\rangle)\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}} \end{split}$$

Step 2. Apply $G \coloneqq ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$

$$\left((2|\psi\rangle\langle\psi|-I_N)\otimes I_2\right)\left(\frac{1}{\sqrt{N}}(|00\cdots00\rangle+|00\cdots01\rangle+\cdots+(-1)|\mathbf{x}^*\rangle+\cdots+|11\cdots11\rangle)\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$$

$$= (2|\psi\rangle\langle\psi| - I_N) \left(\frac{1}{\sqrt{N}}(|00\cdots00\rangle + |00\cdots01\rangle + \dots + (-1)|x^*\rangle + \dots + |11\cdots11\rangle)\right) \otimes \left(I_2 \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$$

$$= (2|\psi\rangle\langle\psi| - I_N) \left(\frac{1}{\sqrt{N}}(|00\cdots00\rangle + |00\cdots01\rangle + \dots + (-1)|x^*\rangle + \dots + |11\cdots11\rangle)\right) \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

Step 2. Apply
$$G := ((2|\psi)\langle\psi| - I_N) \otimes I_2)O_f$$

$$(2|\psi\rangle\langle\psi| - I_N)\underline{|\phi\rangle} = \sum_i \left(\frac{2}{N}(\underline{a_0 + \dots + a_{N-1}}) - a_i\right)|i\rangle$$

$$(2|\psi\rangle\langle\psi| - I_N)\left(\frac{1}{\sqrt{N}}(|00 \dots 00\rangle + |00 \dots 01\rangle + \dots + (-1)|x^*\rangle + \dots + |11 \dots 11\rangle)\right)$$

$$= \left(\frac{2}{N}\frac{N-2}{\sqrt{N}} - \frac{1}{\sqrt{N}}\right)|00 \dots 00\rangle + \dots + \left(\frac{2}{N}\frac{N-2}{\sqrt{N}} + \frac{1}{\sqrt{N}}\right)|x^*\rangle + \dots + \left(\frac{2}{N}\frac{N-2}{\sqrt{N}} - \frac{1}{\sqrt{N}}\right)|11 \dots 11\rangle$$

$$= \frac{1}{\sqrt{N}}\left(\frac{N-4}{N}|00 \dots 00\rangle + \dots + \frac{3N-4}{N}|x^*\rangle + \dots + \frac{N-4}{N}|11 \dots 11\rangle\right)$$
amplified

Step 2. Apply $G \coloneqq ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$ again

$$|\mathbf{x}\rangle|q\rangle \rightarrow |\mathbf{x}\rangle|f(\mathbf{x}) \oplus q\rangle$$

$$O_f\left(\frac{1}{\sqrt{N}}\left(\frac{N-4}{N}|00\cdots00\rangle+\dots+\frac{3N-4}{N}|\mathbf{x}^*\rangle+\dots+\frac{N-4}{N}|11\cdots11\rangle\right)\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$$
$$=\frac{1}{\sqrt{N}}\left(\frac{N-4}{N}|00\cdots00\rangle+\dots+(-1)\frac{3N-4}{N}|\mathbf{x}^*\rangle+\dots+\frac{N-4}{N}|11\cdots11\rangle\right)\otimes\frac{|0\rangle-|1\rangle}{\sqrt{2}}$$
flipped

Step 2. Apply $G \coloneqq ((2|\psi\rangle\langle\psi| - I_N) \otimes I_2)O_f$ again

$$(2|\psi\rangle\langle\psi|-I_N)|\phi\rangle = \sum_i \left(\frac{2}{N}(a_0 + \dots + a_{N-1}) - a_i\right)|i\rangle$$

$$(2|\psi\rangle\langle\psi|-I_N)\left(\frac{1}{\sqrt{N}}\left(\frac{N-4}{N}|00\cdots00\rangle+\cdots+(-1)\frac{3N-4}{N}|\mathbf{x}^*\rangle+\cdots+\frac{N-4}{N}|11\cdots11\rangle\right)\right)$$

$$=\frac{1}{\sqrt{N}}\left(\frac{N^2 - 12N + 16}{N^2}|00\cdots00\rangle + \dots + \frac{5N^2 - 20N + 16}{N^2}|x^*\rangle + \dots + \frac{N^2 - 12N + 16}{N^2}|11\cdots11\rangle\right)$$

more amplified

Step 2. Apply G fixed amount

(informally)
$$\frac{1}{\sqrt{N}} \left(\epsilon |00 \cdots 00\rangle + \dots + \left(\sqrt{N} - \epsilon' \right) |x^*\rangle + \dots + \epsilon |11 \cdots 11\rangle \right)$$

amplified a lot

for some small ϵ, ϵ' .

Step 3. Measurement

(informally)
$$\frac{1}{\sqrt{N}} (\epsilon |00 \cdots 00\rangle + \dots + (\sqrt{N} - \epsilon') |\mathbf{x}^*\rangle + \dots + \epsilon |11 \cdots 11\rangle)$$

Obtain $|x^*\rangle$ with probability close to 1.

Analysis

Presented by Changyeol Lee

Why applying Grover operator (exactly) $\left[\frac{\pi\sqrt{N}}{4}\right]$ times?

Let
$$|\omega\rangle = \frac{1}{\sqrt{N-1}} (\sum_{i} |i\rangle - |\mathbf{x}^*\rangle)$$

Note that $|\omega\rangle$ and $|x^*\rangle$ are orthonormal.

Note. After the step 1, the state is

$$\frac{1}{\sqrt{N}}(|00\cdots00\rangle + |00\cdots01\rangle + |00\cdots10\rangle + \dots + |11\cdots1\rangle)$$

$$= \frac{\sqrt{N-1}}{\sqrt{N}} |\omega\rangle + \frac{1}{\sqrt{N}} |\mathbf{x}^*\rangle$$
$$= \cos\theta |\omega\rangle + \sin\theta |\mathbf{x}^*\rangle$$

 $\cos\theta |\omega\rangle + \sin\theta |x^*\rangle$

Presented by Changyeol Lee

Applying $(2|\psi\rangle\langle\psi|-I_N)$ = Reflection about $|\psi\rangle$

inner product $\langle \psi || \psi^{\perp}
angle = 0$

After applying k times,

 $\cos(\theta + 2k\theta) |\omega\rangle + \sin(\theta + 2k\theta) |x^*\rangle$

Recall
$$\frac{\sqrt{N-1}}{\sqrt{N}} |\omega\rangle + \frac{1}{\sqrt{N}} |x^*\rangle = \cos\theta |\omega\rangle + \sin\theta |x^*\rangle.$$

$$-\theta = \arccos \sqrt{\frac{N-1}{N}}$$

Find k that maximizes
$$\sin^2(\theta + 2k\theta) = \sin^2\left((2k+1) \arccos \sqrt{\frac{N-1}{N}}\right)$$

or find k such that $\frac{\pi}{2} \sim (2k+1) \arccos \sqrt{\frac{N-1}{N}}$

$$k_{optimal} = \frac{\pi}{4}\sqrt{N} - \frac{1}{2} - O\left(\sqrt{1/N}\right)$$

Applications

Factor an integer $M = p \times q$ into p and q where p and q are primes ($2^{2n-1} \le M < 2^{2n}$ for some n) WLOG, $p \le \sqrt{M} < 2^n$.

Given a function f(x) that outputs 1 if x = p; 0 otherwise Given a function $f(x): \{0,1\}^n \rightarrow \{0,1\}$, find the target string p.

Grover's Algorithm.

Requires $\frac{\pi}{4}\sqrt{N} - \frac{1}{2} - O(\sqrt{1/N})$ calls to the quantum oracle. $(N = 2^n)$

<u>Shor's algorithm</u> runs in $O(n^3 \log n)$ times, using $O(n^2 \log n \log \log n)$ gates.

If there are t number of target strings, by calling $k_{optimal} = \frac{\pi}{4} \sqrt{N/t} - \frac{1}{2} - O(\sqrt{t/N})$

or $\Theta(\sqrt{N/t})$ calls to the oracle, we can find a target string.

What if the number of target strings *t* is unknown?

Theorem (Boyer et al., 1996).

There is an (randomized) algorithm that find a target string in expected time in $O(\sqrt{N/t})$.

Given a function $F(x): \{0,1\}^n \to \mathbb{R}$, find a *n*-bit string x^* that minimizes $F(x^*)$.

- We are given an oracle that "compares" F with some constant c.

```
E.g.) F(0) = 9, F(1) = 5, F(2) = 6, F(3) = 7 (Here, n = 2.)
Suppose c = F(3) = 7.
Then, f(0) = 0, f(1) = 1, f(2) = 1, f(3) = 0.
```

Construct a Grover-Search-Problem instance, i.e., given a function $f(x): \{0,1\}^n \to \{0,1\}$, find a *n*-bit string x^{*} such that $f(x^*) = 1$ where the number of target strings, say *t*, is unknown. $\Rightarrow O(\sqrt{N/t})$ calls to the oracle (in expectation).

E.g.) output = 2

Given a function $F(x): \{0,1\}^n \to \mathbb{R}$, find a *n*-bit string x^* that minimizes $F(x^*)$.

- We are given an oracle that "compares" F with some constant c.

E.g.) F(0) = 9, F(1) = 5, F(2) = 6, F(3) = 7 (Here, n = 2.) Suppose c = F(2) = 6. Then, f(0) = 0, f(1) = 1, f(2) = 0, f(3) = 0.

Construct a Grover-Search-Problem instance, i.e., given a function $f(x): \{0,1\}^n \to \{0,1\}$, find a *n*-bit string x^{*} such that $f(x^*) = 1$ where the number of target strings, say *t*, is unknown. $\Rightarrow O(\sqrt{N/t})$ calls to the oracle (in expectation).

E.g.) output = 1

...

Given a function $F(x): \{0,1\}^n \to \mathbb{R}$, find a *n*-bit string x^* that minimizes $F(x^*)$.

- We are given an oracle that "compares" F with some constant c.

E.g.) F(0) = 9, F(1) = 5, F(2) = 6, F(3) = 7 (Here, n = 2.) Suppose c = F(1) = 5. Then, f(0) = 0, f(1) = 0, f(2) = 0, f(3) = 0. Given a function $F(x): \{0,1\}^n \to \mathbb{R}$, find a *n*-bit string x^* that minimizes $F(x^*)$.

- We are given an oracle that "compares" F with some constant c.

Step 1. Pick an index *j* uniformly at random among $\{0, 1, \dots, N-1\}$

Step 2. Repeat the following until the total running time is more than $\Theta(\sqrt{N})$:

Let O_f be the comparison oracle with c = F(j)

Construct a Grover-Search-Problem instance and run the algorithm.

Let j' be the output. Update j to j' if F(j') < F(j).

Theorem (Dürr and Høyer, 1996).

This algorithm finds the index of the minimum value of F with probability at least $\frac{1}{2}$ and runs in $\Theta(\sqrt{N})$.

Minimum Searching with Different Types

Given a function $F(x): \{0,1\}^n \to \mathbb{R}$ and an onto function type $(x): \{0,1\}^n \to \{1,2,\dots,d\}$, find $\{x_1^*,\dots,x_d^*\}$ where $x_i^* = \operatorname{argmin}_{\operatorname{type}(x)=i} F(x)$ for each type $i = 1,2,\dots,d$.

Naïve application of the previous algorithm – run d times for each type, having $\Theta(d\sqrt{N})$ running time.

Theorem (Dürr et al., 2006).

There is an algorithm solves the problem with probability at least $\frac{1}{2}$ and runs in $O(\sqrt{dN})$.

Minimum Spanning Tree

Quantumize the classical (Boruvka's algorithm) MST algorithm

input : Adjacency list-array implementation of undirected G = (V, E) with cost function $c: E \to \mathbb{R}$

Initialization $\mathcal{T} = \{\{1\}, \{2\}, \cdots, \{|V|\}\}$

Repeat until $|\mathcal{T}| = 1$:

Let $\mathcal{T} = \{T_1, \dots, T_k\}$. Find e_1, \dots, e_k where e_i is a minimum cost edge leaving T_i .

Merge T_i and e_i for each i and update \mathcal{T} .

Quantumize the classical (Boruvka's algorithm) MST algorithm

input : Adjacency list-array implementation of undirected G = (V, E) with cost function $c: E \to \mathbb{R}$

Initialization $\mathcal{T} = \{\{1\}, \{2\}, \cdots, \{|V|\}\}$

Repeat until $|\mathcal{T}| = 1$:

Let $\mathcal{T} = \{T_1, \dots, T_k\}$. Find e_1, \dots, e_k where e_i is a minimum cost edge leaving T_i .

Merge T_i and e_i for each i and update \mathcal{T} .

Return T₁

Consider the directed version of the graph, i.e., $(u, v) \rightarrow \langle u, v \rangle, \langle v, u \rangle$

$$F(\langle u, v \rangle) = c((u, v))$$
 if $\langle u, v \rangle$ is leaving some tree and $F(\langle u, v \rangle) = \infty$ if not.

type($\langle u, v \rangle$) = *i* such that $u \in T_i$

Then, apply the algorithm for the Minimum Searching with Different Types (with more queries).

Let n = |V| and m = |E|.

On ℓ^{th} iteration, queries $(\ell + 2)O(\sqrt{mk})$ times.

#of queries

- Observe that $k \leq n/2^{\ell-1}$.

$$\sum_{\ell \ge 1} (\ell+2)O\left(\sqrt{mk}\right) \le \sum_{\ell \ge 1} (\ell+2)O\left(\sqrt{\frac{mn}{2^{\ell-1}}}\right) = O(\sqrt{nm})$$

Error probability at most

$$\sum_{\ell \ge 1} \frac{1}{2^{\ell+2}} \le \frac{1}{4}$$

Connectivity

Network flow problem. (Finding Max Flow)

Matching on graph

Graph coloring

3-SAT

:

approximation algorithms

Thank you