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8 Quantum Computing Recap &

Quantum Fourier transformation

| Given superposition of a's
entangled with function:

] computes quantum state

w/ probability distribution:
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8 Quantum Computing Recap &

Quantum Fourier transformation implementation

Recall
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Let g = 2! for some integer I

Transform state |a) to state

q—1
1
\/_ﬁz |c) exp(2miac/q)
c=0

L] Need 0(1?) gates



%R Preliminaries &

[Knuth'81] We can obtain GCD(x, y) for integers x,y in O(logmin{x, y}) time.
[Bernstein’98] We can decide if integer x is a prime power in (logx)'™°M time.

[Chinese remainder] For k pairwise coprime integers ny,n,, ...,n, where N = []n;,
there is exactly one solution for the system
x =a; (modn;) foralli =1,2,..,k,

0<x<N.

[Euler's formula] e = cos @ + i sin 6.
[Complex norms] |z;||z,| = |z,2,| for complex numbers z4, z,.

[Hardy and Wright'79] We can quickly make a fraction expansion of a number for a given base.

[Euler’s totient function] ¢(r) = # of numbers coprime to r between 1 and r.



%8 Problem: Integer Factorization &

Prob

Given an integer N, return two integers ny,n, = 2 such that nyn, = N.

Alg

Traditional VN algorithm

[ ] General Number Field Sieve (GNFS)

fori < 2,3,...,4/N do
if ¢ divides N then exp (3\/594 -+ 0(1)) (In n)g(ln ln(n))é time
return N/i,i

return false (best known deterministic)

Shor's Algorithm



&8 Shor's Algorithm: Overview &

Def For integers x and n, the order of x in the multiplicative group mod n

is the least integer r such that x” = 1 (mod n).

Integer
Factorization

x,n — order of x




#8 Shor's Algorithm: Non-Quantum Part &3

Alg

Factorization [Miller'76]

if N is even or a prime power, easily factorize N
repeat:
pick a random number 1 <x < N
if GCD(x, N) = 1
g < GCD(x,N)
return (g, N/g)
r « order of x (mod N)
if r is even and x/? # —1 (mod N)
g < GCD(x™? = 1,N)
return (g, N/g)
until confident
return prime




#8 Shor's Algorithm: Non-Quantum Part &3

Alg Factorization [Miller'76] Recall
if N is even or a prime power, easily factorize N H] [Knuth'81] We can obtain GCD(x,y)
for integers x,y in 0(log min{x, y})
time.

[ ] [Bernstein'98] We can decide if
integer x is a prime power in
(log x)1*°M time.

v

Assume N is not prime

=]

for i = 2, primes py, ..., p;,

and integers a4, ...,a; = 1.




#8 Shor's Algorithm: Non-Quantum Part &3

Alg

Factorization [Miller'76]

pick a random number 1 <x < N
if GCD(x, N) = 1
g < GCD(x,N)

Assume N is not prime

=]

for i = 2, primes py, ..., p;,

and integers ay, ...,a; = 1.

[ ] How can we be sure?
L] If GED(x,N) # 1, we're happy ©

[ 1 What can we do if GCD(x,N) = 1?

v

[] Use x to create another candidate



#8 Shor's Algorithm: Non-Quantum Part &3

By def| r is the least integer such that x™ = 1 (mod N).

x"—1=0QN

[1 If ris even, ie,

X" —1=x2"—-1= (xr’ + 1)(x’"’ - 1)
[ ] Note that,

GCD(x™ —1,N) # N

[ ] Therefore, N is composite if:

GCD(x™ +1,N) # N



Alg

&8 Shor's Algorithm: Non-Quantum Part &3

Factorization [Miller'76]

pick a random number 1 <x < N

assume GCD(x,N) =1

r « order of x (mod N)
if r is even and x/? # —1 (mod N)
g < GCD(x"/? = 1,N)

Assume N is not prime

=[]

r, = order of x (mod p,")

Failure

H] if r is odd

v

LCM(r;) =r =1 (mod 2)

~ 1; =1 (mod 2) for all i
L] if x™/2 = —1 (mod N)

r; =2™Mq; q; =1 (mod 2)

for all i and some integer m > 1

[l r=2"g;, ¢ =1(mod2), m=>0

11



#8 Shor's Algorithm: Non-Quantum Part &3

Alg Factorization [Miller'76] Test fails when

r;,=2Mq;, g =1(mod2), m>0

repeat:

pick a random number 1 <x < N Recall

H] [(Chinese remainder] There is
exactly one solution for the system

x = a; (modn;) forall i =1,2,..,k,
0<x<N.

L] choosing x € [2,N — 1] UAR.
& (large N)
choosing 7;'s € [0,p;"| UAR.

until confident [ ] Prob(failure) = z l_[ Prob(r; = 2™q;)
[

m

1
< 2#prime factors—1 =

1
2 12



&8 Shor's Algorithm: Non-Quantum Part &5

Alg

— Factorization [Miller'76]

if N is even or a prime power, easily factorize N
repeat:
pick a random number 1 <x < N
if GCD(x,N) # 1
g < GCD(x,N)
return (g, N/g)

r « order of x (mod N)
if r is even and x"/?2 £ —1 (mod N)
g < GCD(x"/? = 1,N)
return (g, N/g)

until confident
return prime

Overall

| £ # of iterations
if N is prime, always correct

if N is composite, incorrect with
probability at most 1/2°

Running time in 0(I(logN + q))

N

Running time of
quantum submodule

To
Quantum Part D>

13



%8 Shor's Algorithm: Quantum Part &3

Alg

Order-Finding Quantum Algorithm

q « smallest power of 2 with g > N2
repeat:

make uniform superposition in register 1:

LS oo
\/aa=0
compute |x¢ (mod N)) in register 2
perform Fourier transform in register 1
c « observation result
d/r «round c/q to nearest frac w/ r < N

until we are confident

return r

14



&8 Shor's Algorithm: Quantum Part &5

Alg

Order-Finding Quantum Algorithm

q « smallest power of 2 with g > N2

Use two quantum registers

e

H:I Register 1: value computation
|| Register 2: condition checking

.| Both ranges include states from 0
toN—-1

v

] Need at least N? states when
concatenated

15



&8 Shor's Algorithm: Quantum Part &5

Alg

Order-Finding Quantum Algorithm

make uniform superposition in register 1:

1 &
— ) |a)|0)
72

compute |x¢ (mod N)) in register 2

How?

H] Uniform superposition with

v

Hadamard gate

[1 |x® (mod N)) with conditioned

|x¢

gates
(mod N)) implementation
Pw « 1
fori=0,1,..,logqg — 1:
if |a)[i] = 1:

i
Pw « Pw X x2

16



&8 Shor's Algorithm: Quantum Part &5

Alg

Order-Finding Quantum Algorithm

make uniform superposition in register 1:

How?

H:I Uniform superposition with

Hadamard gate

[1 |x® (mod N)) with conditioned

e | gates
— ) |a}|0) a ' '
\/ﬁ; |x¢ (mod N)) implementation
te [x® (mod N)) in register 2 P
compute |x¢ (mod N)) in register fori =01,..,logq — 1:
if la)[i] = 1:
|a) i ) control
x?
Pw —— Pw « Pw x x?'

multiply

17



%8 Shor's Algorithm: Quantum Part &3

Alg Order-Finding Quantum Algorithm How?

Uniform superposition with
Hadamard gate

make uniform superposition in register 1: |x* (mod N)) with conditioned

e gates
\/_ﬁ;(;la)lo) |x% (mod N)) implementation
@ (mod N)) in register 2 P
compute |x? (mod N)) in register fori=0,1,..,logq —1:
if a)[i] = 1:
|a) i X]control T<0
x? J X control forj=0,1,..,logq — 1:
v v . i
if x2'[j] = 1:

Pw Shift j .
— // add 2/ x Pwto T

T XOR
Pw « T

18



&8 Shor's Algorithm: Quantum Part &5

Alg

Order-Finding Quantum Algorithm

make uniform superposition in register 1:

1 &
— ) |a)|0)
72

compute |x¢ (mod N)) in register 2

How?

H:I Uniform superposition with

v

Hadamard gate

[1 |x® (mod N)) with conditioned

gates

|x¢

(mod N)) implementation

Intuition:

multiplication w/ base 2

Pw « 1
fori=0,1,..,logqg — 1:
if la)[i] = 1:
T«0
forj=0,1,..,logq — 1:

if x2'[j] = 1:

Total of 0((logN)?) gates

—

add 2/ x Pwto T
Pw « T

19



&8 Shor's Algorithm: Quantum Part &5

Alg

Order-Finding Quantum Algorithm

perform Fourier transform in register 1

Before

1 &
— ) |a)[x® (mod N))
)

L] Tran

sform state |a) to state

q-1
1
ﬁz exp(2miac/q) |c)
c=0

After

Q

Q| =

0c

Q
Il

1

exp(2miac/q)|c) |x* (mod N))
0

20



&8 Shor's Algorithm: Quantum Part &5

Current quantum state

q-1q-1

1 . a
52 z exp(2miac/q)|c) |x* (mod N))

a=0 c=0

The probability of observing state |c, x* (mod N))

(1 By definition of quantum state

1 z <2nac)
— exp
q q

a:x=xk

2

21



&8 Shor's Algorithm: Quantum Part &5

Current quantum state

q-1q-1

Z z exp(2miac/q)|c) |x* (mod N))

a=0 c=0

1
q

The probability of observing state |c, x* (mod N))

| By definition of quantum state

1 z <2nac)
— exp
q q

a:x=xk

2

"1 Let a = br + k for integer b

| Ma=D/r] 2

2 Z exp(2mi(br + k)c/q)
q b=0

22
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&8 Shor's Algorithm: Quantum Part &5
Current quantum state

1q—1 qg-1

az z exp(2miac/q)|c) |x* (mod N))
a=0 c=0

The probability of observing state |c, x* (mod N))
D Reca” |21||ZZ| - |lezl:
2
= |cos <2nkc>+isin (2nkc> =1 \\ orike\ |2 1l(q—k—l)/rJ | ?
q q exp( ) - exp(2mibre/q)
| 4 b=0

| Let a = br + k for integer b

| Wa=te=n/r] 2

2 z exp(2mi(br + k)c/q)
v =

23



&8 Shor's Algorithm: Quantum Part &5

Current quantum state

q—1q-1

1
q

a=0 c=0

Z z exp(2miac/q)|c) |x* (mod N))

The probability of observing state |c, x* (mod N))

If we let rc = dq + R:

exp(2mibrc/q)

= exp(2mibR /q) exp(2mibd)

= exp(2mibR /q)(cos 2mtbhd + i sin2mhd)

D Reca” |21||ZZ| - |lezl:

1 l(q—k—-1)/7]

b=0

R = _a 4

Note that 2bd is an even integer: L] Let R:R = rc (mod q),R € ( 2’2]

= exp(2mibR/q)(1 + i - 0) (q—k=1)/r] ?
)

exp(2mibR/q)

1 b=0

p z exp(2mibrc/q)

2

24



&8 Shor's Algorithm: Quantum Part &5

Current quantum state

q—1q-1

a=0 c=0

1 . a
az z exp(2miac/q)|c) |x* (mod N))

The probability of observing state |c, x* (mod N))

| Approximate to integral:

[(q—k—-1)/7] rlq—k—1

1 (q
— exp(2wibR/q)| = —j
p p /q =

b=0
R 1 1 ' R

Minimized when — = + -, ~ —f exp <2m—u> du + 0
T 2 r 0 r

value at minimum =

|

q

T J R
exp <2ni?u) du + 0 <
)

Vq—f—ﬂ‘

<eXp <_

2TIiR
q

)-9)

25



&8 Shor's Algorithm: Quantum Part &5

Alg

Order-Finding Quantum Algorithm

Cont.

¢ « observation result

H] The probability of |¢,x* (mod N))
at least 3—12 In range

<R<

N =
N =

L] Let rc =dq +R:

c d 1
S — S_
q 7| 29
Rounding base 2
c+1

c—1

c

q q

| | | I |
I I I J

d/r In here

26



&8 Shor's Algorithm: Quantum Part &5

Alg Order-Finding Quantum Algorithm Rounding base 2 |~ )
] c c+
q q q
d/r In here
Q. How many states |c, x* (mod N)) Cont
can we compute r this way? '
H:l Assume 32+ fractions with r < N
d —
1 B d2 _ dlrz dzrl > 1 S 1
rn Ty rr, N?
| | We chose g > N?
d/r «round c/q to nearest frac w/ r < N 1 1
R > —
/¥ NZ q
Solve with fast fraction expansion |i| Only one fraction with r < N inside

orange!

27



8 Shor's Algorithm: Non-Quantum Part &5

Recall::Quantum Fourier transformation

V'S

| Given superposition of a's  f(a)

entangled with functio%

f(a) = x*(mod N) is 1-o

periodic injective

| computes quantum state
w/ probability distribution:

0 ]
Y > a
wavelength

With high probability,

c is an integral multiple of r

L~

4

)




8 Shor's Algorithm: Non-Quantum Part &5

Recall::Quantum Fourier transformation

V'

c—1
q
|

Pr(lc))

¢
q q
|
| — T 1
At most one d/r in here

q: fixed, know

0 r 2r | c)
/7 r: fixed, don't know, coprime w/ d

With high probability, c: not fixed, observe
c is an integral multiple of r

d: at most one for each (q,7,¢)

How many states |c, x* (mod N))?

(#d's coprime w/ r) - (#xk(mod N)) =¢(r)-r

29



&8 Shor's Algorithm: Quantum Part &5

Alg Order-Finding Quantum Algorithm WEREVE

H] Obtain correct r for r¢(r) choices
repeat: of |c, x* (mod N))

[ 1 The probability of each

k LN
|c,x (mod N)) at least -

1 Obtain correct r with probability
at least

r¢r) 0
3r¢2 =~ 3loglogr

until we are confident

for some constant &

v

[ ] Repeat O(loglogr) times to be sure

30



&8 Shor's Algorithm: Quantum Part &5

Alg Order-Finding Quantum Algorithm Overall
q « smallest power of 2 with g > N2 0(loglogr) iterations
repeat:
. N . |x¢ (mod N)) and QFT both use
make uniform superposition in register 1: 0((10gN)2) gates
q-1
izlaﬂ(’) overall # gates and running time
Vq & polynomial in log N

compute |x¢ (mod N)) in register 2

perform Fourier transform in register 1

c « observation result

d/r «round c/q to nearest frac w/ r < N
until we are confident

return r

31
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Alg

— Factorization [Miller'76]

if N is even or a prime power, easily factorize N
repeat:
pick a random number 1 <x < N
if GCD(x,N) # 1
g < GCD(x,N)
return (g, N/g)

r « order of x (mod N)
if r is even and x"/?2 £ —1 (mod N)
g < GCD(x"/? = 1,N)
return (g, N/g)

until confident
return prime

Overall

| £ # of iterations
if N is prime, always correct

if N is composite, incorrect with
probability at most 1/2°

Running time in 0(I(logN + q))
7 N—

Running time of
quantum submodule
polynomial in log N

N >> From

Quantgm Part
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