
Shor’s Algorithm
Sungmin Kim

Yonsei Theory Study Group

23’ Oct. 04

2

𝑎

𝑓 𝑎

ȁ ۧ𝑐

Given superposition of 𝑎’s
entangled with function:

computes quantum state
w/ probability distribution:

wavelength

Quantum Fourier transformation

Quantum Computing Recap

Pr ȁ ۧ𝑐

Quantum Computing Recap

3

Transform state ȁ ۧ𝑎 to state

1

𝑞

𝑐=0

𝑞−1

ȁ ۧ𝑐 exp 2𝜋𝑖𝑎𝑐/𝑞

Need 𝑂 𝑙2 gates

Let 𝑞 = 2𝑙 for some integer 𝑙

Quantum Fourier transformation implementation Recall

ȁ ۧ𝑎𝑙−1

ȁ ۧ𝑎𝑙−2

ȁ ۧ𝑎𝑙−3

ȁ ۧ𝑎0

𝐻 𝑆

𝐻

𝑆 𝑆

𝑆 𝑆

𝐻

𝐻

⋯⋯⋯

𝐻 (Hadamard) gate 𝑆 gate

ȁ ۧ0

ȁ ۧ1

ȁ ۧ0 ȁ ۧ1

1

2

1

2

1

2
−

1

2

ȁ ۧ00

ȁ ۧ01

ȁ ۧ00 ȁ ۧ01

ȁ ۧ10

ȁ ۧ11

ȁ ۧ10 ȁ ۧ11

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝑒𝑖𝜋/2
𝑘−𝑗

Preliminaries

4

[Knuth’81] We can obtain GCD 𝑥, 𝑦 for integers 𝑥, 𝑦 in 𝑂 logmin 𝑥, 𝑦 time.

[Bernstein’98] We can decide if integer 𝑥 is a prime power in log 𝑥 1+𝑜 1 time.

[Complex norms] 𝑧1 𝑧2 = ȁ𝑧1𝑧2ȁ for complex numbers 𝑧1, 𝑧2.

[Euler’s formula] 𝑒𝑖𝜃 = cos𝜃 + 𝑖 sin 𝜃.

[Chinese remainder] For 𝑘 pairwise coprime integers 𝑛1, 𝑛2, … , 𝑛𝑘 where 𝑁 = ∏𝑛𝑖 ,

there is exactly one solution for the system

𝑥 ≡ 𝑎𝑖 mod 𝑛𝑖 for all 𝑖 = 1,2, … , 𝑘,

0 ≤ 𝑥 < 𝑁.

[Hardy and Wright’79] We can quickly make a fraction expansion of a number for a given base.

[Euler’s totient function] 𝜙 𝑟 = # of numbers coprime to 𝑟 between 1 and 𝑟.

Problem: Integer Factorization

5

Prob Given an integer 𝑁, return two integers 𝑛1, 𝑛2 ≥ 2 such that 𝑛1𝑛2 = 𝑁.

Alg Traditional 𝑁 algorithm

for 𝑖 ← 2,3, … , 𝑁 do

if 𝑖 divides 𝑁 then

return 𝑁/𝑖, 𝑖

return false (best known deterministic)

General Number Field Sieve (GNFS)

exp
3 64

9
+ 𝑜 1 ln 𝑛

1

3 ln ln 𝑛
2

3 time

Shor’s Algorithm

Shor’s Algorithm: Overview

6

Integer
Factorization

𝑥, 𝑛 → order of 𝑥

Def For integers 𝑥 and 𝑛, the order of 𝑥 in the multiplicative group mod 𝑛

is the least integer 𝑟 such that 𝑥𝑟 ≡ 1 (mod 𝑛).

Shor’s Algorithm: Non-Quantum Part

7

Alg Factorization [Miller’76]

if 𝑁 is even or a prime power, easily factorize 𝑁

repeat:

until confident

return prime

pick a random number 1 < 𝑥 < 𝑁

if GCD 𝑥,𝑁 ≠ 1

𝑟 ← order of 𝑥 mod 𝑁

if 𝑟 is even and 𝑥𝑟/2 ≢ −1 mod 𝑁

𝑔 ← GCD 𝑥𝑟/2 − 1,𝑁

return 𝑔, 𝑁/𝑔

𝑔 ← GCD 𝑥,𝑁

return 𝑔, 𝑁/𝑔

Shor’s Algorithm: Non-Quantum Part

8

Alg Factorization [Miller’76]

if 𝑁 is even or a prime power, easily factorize 𝑁

repeat:

until confident

return prime

pick a random number 1 < 𝑥 < 𝑁

if GCD 𝑥,𝑁 ≠ 1

𝑟 ← order of 𝑥 mod 𝑁

if 𝑟 is even and 𝑥𝑟/2 ≢ −1 mod 𝑁

𝑔 ← GCD 𝑥𝑟/2 − 1,𝑁

return 𝑔, 𝑁/𝑔

𝑔 ← GCD 𝑥,𝑁

return 𝑔, 𝑁/𝑔

[Knuth’81] We can obtain GCD 𝑥, 𝑦
for integers 𝑥, 𝑦 in 𝑂 logmin 𝑥, 𝑦
time.

[Bernstein’98] We can decide if
integer 𝑥 is a prime power in

log 𝑥 1+𝑜 1 time.

Recall

Assume 𝑁 is not prime

𝑁 =ෑ𝑝𝑖
𝑎𝑖

for 𝑖 ≥ 2, primes 𝑝1, … , 𝑝𝑖,

and integers 𝑎1, … , 𝑎𝑖 ≥ 1.

Shor’s Algorithm: Non-Quantum Part

9

Alg Factorization [Miller’76]

if 𝑁 is even or a prime power, easily factorize 𝑁

repeat:

until confident

return prime

pick a random number 1 < 𝑥 < 𝑁

if GCD 𝑥,𝑁 ≠ 1

if 𝑟 is even and 𝑥𝑟/2 ≢ −1 mod 𝑁

𝑔 ← GCD 𝑥𝑟/2 − 1,𝑁

return 𝑔, 𝑁/𝑔

𝑔 ← GCD 𝑥,𝑁

𝑟 ← order of 𝑥 mod 𝑁

return 𝑔, 𝑁/𝑔

How can we be sure?

Assume 𝑁 is not prime

𝑁 =ෑ𝑝𝑖
𝑎𝑖

for 𝑖 ≥ 2, primes 𝑝1, … , 𝑝𝑖,

and integers 𝑎1, … , 𝑎𝑖 ≥ 1.

If GCD 𝑥, 𝑁 ≠ 1, we’re happy ☺

What can we do if GCD 𝑥,𝑁 = 1?

Use 𝑥 to create another candidate

Shor’s Algorithm: Non-Quantum Part

10

If 𝑟 is even, i.e.,

𝑟 is the least integer such that 𝑥𝑟 ≡ 1 (mod 𝑁).

𝑥𝑟 − 1 = 𝑄𝑁

𝑥𝑟 − 1 = 𝑥2𝑟
′
− 1 = 𝑥𝑟

′
+ 1 𝑥𝑟

′
− 1

Note that,

GCD 𝑥𝑟
′
− 1,𝑁 ≠ 𝑁

Therefore, 𝑁 is composite if:

GCD 𝑥𝑟
′
+ 1,𝑁 ≠ 𝑁

By def

Shor’s Algorithm: Non-Quantum Part

11

Alg Factorization [Miller’76]

if 𝑁 is even or a prime power, easily factorize 𝑁

repeat:

until confident

return prime

pick a random number 1 < 𝑥 < 𝑁

if GCD 𝑥,𝑁 ≠ 1

if 𝑟 is even and 𝑥𝑟/2 ≢ −1 mod 𝑁

𝑔 ← GCD 𝑥𝑟/2 − 1,𝑁

return 𝑔, 𝑁/𝑔

𝑔 ← GCD 𝑥,𝑁

return 𝑔, 𝑁/𝑔

𝑟 ← order of 𝑥 mod 𝑁

assume GCD 𝑥, 𝑁 = 1

𝑁 =ෑ𝑝𝑖
𝑎𝑖

𝑟𝑖 = order of 𝑥 mod 𝑝𝑖
𝑎𝑖

Assume 𝑁 is not prime

if 𝑟 is odd

LCM 𝑟𝑖 = 𝑟 ≡ 1 mod 2

∴ 𝑟𝑖 ≡ 1 mod 2 for all 𝑖

Failure

if 𝑥𝑟/2 ≡ −1 mod 𝑁

𝑟𝑖 = 2𝑚𝑞𝑖 , 𝑞𝑖 ≡ 1 mod 2

for all 𝑖 and some integer 𝑚 ≥ 1

𝑟𝑖 = 2𝑚𝑞𝑖 , 𝑞𝑖 ≡ 1 mod 2 , 𝑚 ≥ 0

Shor’s Algorithm: Non-Quantum Part

12

Alg Factorization [Miller’76]

if 𝑁 is even or a prime power, easily factorize 𝑁

repeat:

until confident

return prime

pick a random number 1 < 𝑥 < 𝑁

if GCD 𝑥,𝑁 ≠ 1

if 𝑟 is even and 𝑥𝑟/2 ≢ −1 mod 𝑁

𝑔 ← GCD 𝑥𝑟/2 − 1,𝑁

return 𝑔, 𝑁/𝑔

𝑔 ← GCD 𝑥,𝑁

return 𝑔, 𝑁/𝑔

𝑟 ← order of 𝑥 mod 𝑁

[Chinese remainder] There is
exactly one solution for the system

Recall

𝑥 ≡ 𝑎𝑖 mod 𝑛𝑖 for all 𝑖 = 1,2, … , 𝑘 ,

0 ≤ 𝑥 < 𝑁.

Test fails when

𝑟𝑖 = 2𝑚𝑞𝑖 , 𝑞𝑖 ≡ 1 mod 2 , 𝑚 ≥ 0

choosing 𝑥 ∈ 2, 𝑁 − 1 U.A.R.
⇔ (large 𝑁)

choosing 𝑟𝑖’s ∈ 0, 𝑝𝑖
𝑎𝑖 U.A.R.

Prob failure =

𝑚

ෑ

𝑖

Prob 𝑟𝑖 ≡ 2𝑚𝑞𝑖

<
1

2#prime factors−1
≤
1

2

Shor’s Algorithm: Non-Quantum Part

13

Alg Factorization [Miller’76]

if 𝑁 is even or a prime power, easily factorize 𝑁

repeat:

until confident

return prime

pick a random number 1 < 𝑥 < 𝑁

if GCD 𝑥,𝑁 ≠ 1

if 𝑟 is even and 𝑥𝑟/2 ≢ −1 mod 𝑁

𝑔 ← GCD 𝑥𝑟/2 − 1,𝑁

return 𝑔, 𝑁/𝑔

𝑔 ← GCD 𝑥,𝑁

return 𝑔, 𝑁/𝑔

𝑟 ← order of 𝑥 mod 𝑁

𝑙 ≜ # of iterations

Overall

Running time in 𝑂 𝑙 log𝑁 + 𝑞

if 𝑁 is composite, incorrect with
probability at most 1/2𝑙

if 𝑁 is prime, always correct

Running time of
quantum submodule

To
Quantum Part

Shor’s Algorithm: Quantum Part

14

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ 𝑟 < 𝑁

repeat:

until we are confident

Shor’s Algorithm: Quantum Part

15

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ 𝑟 < 𝑁

repeat:

until we are confident

Register 1: value computation

Use two quantum registers

Register 2: condition checking

Both ranges include states from 0
to 𝑁 − 1

Need at least 𝑁2 states when
concatenated

Shor’s Algorithm: Quantum Part

16

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ 𝑟 < 𝑁

repeat:

until we are confident

Uniform superposition with
Hadamard gate

How?

ȁ ۧ𝑥𝑎 mod 𝑁 with conditioned
gates

ȁ ۧ𝑥𝑎 mod 𝑁 implementation

Pw ← 1

for 𝑖 = 0,1, … , log 𝑞 − 1:

if ȁ ۧ𝑎 𝑖 = 1:

for 𝑗 = 0,1, … , log 𝑞 − 1:

if 𝑥2
𝑖
𝑗 = 1:

add 2𝑗 × Pw to T

T ← 0

Pw ← T

Pw ← Pw × 𝑥2
𝑖

Shor’s Algorithm: Quantum Part

17

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ denom.

repeat:

until we are confident

Uniform superposition with
Hadamard gate

How?

ȁ ۧ𝑥𝑎 mod 𝑁 with conditioned
gates

Pw

𝑥2
𝑖

multiply

ȁ ۧ𝑎 control𝑖

ȁ ۧ𝑥𝑎 mod 𝑁 implementation

Pw ← 1

for 𝑖 = 0,1, … , log 𝑞 − 1:

if ȁ ۧ𝑎 𝑖 = 1:

for 𝑗 = 0,1, … , log 𝑞 − 1:

if 𝑥2
𝑖
𝑗 = 1:

add 2𝑗 × Pw to T

T ← 0

Pw ← T

Pw ← Pw × 𝑥2
𝑖

Shor’s Algorithm: Quantum Part

18

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ denom.

repeat:

until we are confident

𝑥2
𝑖

𝑖

T

control

𝑗 control

XOR

Shift 𝑗Pw

ȁ ۧ𝑎

Uniform superposition with
Hadamard gate

How?

ȁ ۧ𝑥𝑎 mod 𝑁 with conditioned
gates

ȁ ۧ𝑥𝑎 mod 𝑁 implementation

Pw ← 1

for 𝑖 = 0,1, … , log 𝑞 − 1:

if ȁ ۧ𝑎 𝑖 = 1:

for 𝑗 = 0,1, … , log 𝑞 − 1:

if 𝑥2
𝑖
𝑗 = 1:

add 2𝑗 × Pw to T

T ← 0

Pw ← T

Shor’s Algorithm: Quantum Part

19

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ denom.

repeat:

until we are confident

Uniform superposition with
Hadamard gate

How?

ȁ ۧ𝑥𝑎 mod 𝑁 with conditioned
gates

ȁ ۧ𝑥𝑎 mod 𝑁 implementation

Pw ← 1

for 𝑖 = 0,1, … , log 𝑞 − 1:

if ȁ ۧ𝑎 𝑖 = 1:

for 𝑗 = 0,1, … , log 𝑞 − 1:

if 𝑥2
𝑖
𝑗 = 1:

add 2𝑗 × Pw to T

T ← 0

Pw ← T

Intuition:
multiplication w/ base 2

Total of 𝑂 log𝑁 2 gates

𝑎 𝑏
𝑐 𝑑×
𝑏𝑑𝑎𝑑

𝑏𝑐𝑎𝑐+

T

Shor’s Algorithm: Quantum Part

20

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ 𝑟 < 𝑁

repeat:

until we are confident

Before

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ𝑥𝑎 mod 𝑁

After

1

𝑞

𝑎=0

𝑞−1

𝑐=0

𝑞−1

exp 2𝜋𝑖𝑎𝑐/𝑞 ȁ ۧ𝑐 ȁ ۧ𝑥𝑎 mod 𝑁

Transform state ȁ ۧ𝑎 to state

1

𝑞

𝑐=0

𝑞−1

exp 2𝜋𝑖𝑎𝑐/𝑞 ȁ ۧ𝑐

The probability of observing state ห𝑐, ൿ𝑥𝑘 mod 𝑁

Shor’s Algorithm: Quantum Part

21

1

𝑞

𝑎=0

𝑞−1

𝑐=0

𝑞−1

exp 2𝜋𝑖𝑎𝑐/𝑞 ȁ ۧ𝑐 ȁ ۧ𝑥𝑎 mod 𝑁

1

𝑞

𝑎:𝑥𝑎≡𝑥𝑘

exp
2𝜋𝑎𝑐

𝑞

2

By definition of quantum state

Current quantum state

The probability of observing state ห𝑐, ൿ𝑥𝑘 mod 𝑁

Shor’s Algorithm: Quantum Part

22

1

𝑞

𝑎=0

𝑞−1

𝑐=0

𝑞−1

exp 2𝜋𝑖𝑎𝑐/𝑞 ȁ ۧ𝑐 ȁ ۧ𝑥𝑎 mod 𝑁

1

𝑞

𝑎:𝑥𝑎≡𝑥𝑘

exp
2𝜋𝑎𝑐

𝑞

2

By definition of quantum state

Current quantum state

1

𝑞

𝑏=0

𝑞−𝑘−1 /𝑟

exp 2𝜋𝑖 𝑏𝑟 + 𝑘 𝑐/𝑞

2

Let 𝑎 = 𝑏𝑟 + 𝑘 for integer 𝑏

The probability of observing state ห𝑐, ൿ𝑥𝑘 mod 𝑁

Shor’s Algorithm: Quantum Part

23

1

𝑞

𝑎=0

𝑞−1

𝑐=0

𝑞−1

exp 2𝜋𝑖𝑎𝑐/𝑞 ȁ ۧ𝑐 ȁ ۧ𝑥𝑎 mod 𝑁

1

𝑞

𝑎:𝑥𝑎≡𝑥𝑘

exp
2𝜋𝑎𝑐

𝑞

2

By definition of quantum state

Current quantum state

1

𝑞

𝑏=0

𝑞−𝑘−1 /𝑟

exp 2𝜋𝑖 𝑏𝑟 + 𝑘 𝑐/𝑞

2

Let 𝑎 = 𝑏𝑟 + 𝑘 for integer 𝑏

exp
2𝜋𝑖𝑘𝑐

𝑞

2
1

𝑞

𝑏=0

𝑞−𝑘−1 /𝑟

exp 2𝜋𝑖𝑏𝑟𝑐/𝑞

2

Recall 𝑧1 𝑧2 = 𝑧1𝑧2 :

= cos
2𝜋𝑘𝑐

𝑞
+ 𝑖 sin

2𝜋𝑘𝑐

𝑞

2

= 1

The probability of observing state ห𝑐, ൿ𝑥𝑘 mod 𝑁

Shor’s Algorithm: Quantum Part

24

1

𝑞

𝑎=0

𝑞−1

𝑐=0

𝑞−1

exp 2𝜋𝑖𝑎𝑐/𝑞 ȁ ۧ𝑐 ȁ ۧ𝑥𝑎 mod 𝑁

Current quantum state

1

𝑞

𝑏=0

𝑞−𝑘−1 /𝑟

exp 2𝜋𝑖 𝑏𝑟 + 𝑘 𝑐/𝑞

2

Let 𝑎 = 𝑏𝑟 + 𝑘 for integer 𝑏

exp
2𝜋𝑖𝑘𝑐

𝑞

2
1

𝑞

𝑏=0

𝑞−𝑘−1 /𝑟

exp 2𝜋𝑖𝑏𝑟𝑐/𝑞

2

Recall 𝑧1 𝑧2 = 𝑧1𝑧2 :

Let 𝑅:𝑅 ≡ 𝑟𝑐 mod 𝑞 , 𝑅 ∈ −
𝑞

2
,
𝑞

2

1

𝑞

𝑏=0

𝑞−𝑘−1 /𝑟

exp 2𝜋𝑖𝑏𝑅/𝑞

2

1

𝑞

𝑎:𝑥𝑎≡𝑥𝑘

exp
2𝜋𝑎𝑐

𝑞

2

By definition of quantum state

exp 2𝜋𝑖𝑏𝑟𝑐/𝑞
= exp(2𝜋𝑖𝑏𝑅/𝑞) exp 2𝜋𝑖𝑏𝑑
= exp(2𝜋𝑖𝑏𝑅/𝑞) cos 2𝜋𝑏𝑑 + 𝑖 𝑠𝑖𝑛2𝜋𝑏𝑑

If we let 𝑟𝑐 = 𝑑𝑞 + 𝑅:

Note that 2𝑏𝑑 is an even integer:

= exp(2𝜋𝑖𝑏𝑅/𝑞) 1 + 𝑖 ⋅ 0

The probability of observing state ห𝑐, ൿ𝑥𝑘 mod 𝑁

Shor’s Algorithm: Quantum Part

25

1

𝑞

𝑎=0

𝑞−1

𝑐=0

𝑞−1

exp 2𝜋𝑖𝑎𝑐/𝑞 ȁ ۧ𝑐 ȁ ۧ𝑥𝑎 mod 𝑁

Current quantum state

Approximate to integral:

1

𝑞

𝑏=0

𝑞−𝑘−1 /𝑟

exp 2𝜋𝑖𝑏𝑅/𝑞

2

=
1

𝑟
න
0

𝑟
𝑞
𝑞−𝑘−1

𝑟
exp 2𝜋𝑖

𝑅

𝑟
𝑢 𝑑𝑢 + 𝑂

𝑞 − 𝑘 − 1
𝑟

𝑞
exp

2𝜋𝑖𝑅

𝑞
− 1

≈
1

𝑟
න
0

1

exp 2𝜋𝑖
𝑅

𝑟
𝑢 𝑑𝑢 + 𝑂

1

𝑞Minimized when
𝑅

𝑟
= ±

1

2
,

value at minimum =
4

𝜋2𝑟2
≈

1

3𝑟2

Shor’s Algorithm: Quantum Part

26

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ 𝑟 < 𝑁

repeat:

until we are confident

at least
1

3𝑟2
 in range

The probability of ห𝑐, ൿ𝑥𝑘 mod 𝑁

Cont.

−
𝑟

2
< 𝑅 ≤

𝑟

2

Let 𝑟𝑐 = 𝑑𝑞 + 𝑅:

𝑐

𝑞
−
𝑑

𝑟
≤

1

2𝑞

Rounding base 2
𝑐

𝑞

𝑑/𝑟 in here

𝑐 + 1

𝑞
𝑐 − 1

𝑞

Shor’s Algorithm: Quantum Part

27

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ 𝑟 < 𝑁

repeat:

until we are confident

Rounding base 2
𝑐

𝑞

𝑑/𝑟 in here

𝑐 + 1

𝑞
𝑐 − 1

𝑞

Cont.

𝑑1
𝑟1
−
𝑑2
𝑟2

=
𝑑1𝑟2 − 𝑑2𝑟1

𝑟1𝑟2
≥

1

𝑟1𝑟2
>

1

𝑁2

Assume ∃2+ fractions with 𝑟 < 𝑁

1

𝑁2 >
1

𝑞

We chose 𝑞 > 𝑁2

Only one fraction with 𝑟 < 𝑁 inside
orange!

Solve with fast fraction expansion

Q. How many states ห𝑐, ൿ𝑥𝑘 mod 𝑁

can we compute 𝑟 this way?

Shor’s Algorithm: Non-Quantum Part

28

𝑎

𝑓 𝑎

ȁ ۧ𝑐

Given superposition of 𝑎’s
entangled with function:

computes quantum state
w/ probability distribution:

wavelength

Recall::Quantum Fourier transformation

Pr ȁ ۧ𝑐 With high probability,
𝑐 is an integral multiple of 𝑟

𝑓 𝑎 = 𝑥𝑎 mod 𝑁 is
periodic injective

1

𝑟 2𝑟 ⋯0

Shor’s Algorithm: Non-Quantum Part

29

ȁ ۧ𝑐

Pr ȁ ۧ𝑐

With high probability,
𝑐 is an integral multiple of 𝑟

𝑟 2𝑟 ⋯

𝑐

𝑞

At most one 𝑑/𝑟 in here

𝑐 + 1

𝑞

𝑐 − 1

𝑞

𝑞: fixed, know

𝑟: fixed, don’t know, coprime w/ 𝑑

𝑐: not fixed, observe

𝑑: at most one for each 𝑞, 𝑟, 𝑐

0

How many states ห𝑐, ൿ𝑥𝑘 mod 𝑁 ?

Recall::Quantum Fourier transformation

#𝑑′s coprime w/ 𝑟 ⋅ #𝑥𝑘 mod 𝑁 = 𝜙 𝑟 ⋅ 𝑟

Shor’s Algorithm: Quantum Part

30

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ 𝑟 < 𝑁

repeat:

until we are confident

Obtain correct 𝑟 for 𝑟𝜙 𝑟 choices

We have

The probability of each

ห𝑐, ൿ𝑥𝑘 mod 𝑁 at least
1

3𝑟2

of ห𝑐, ൿ𝑥𝑘 mod 𝑁

Obtain correct 𝑟 with probability

at least

𝑟𝜙 𝑟

3𝑟2
>

𝛿

3 log log 𝑟

for some constant 𝛿

Repeat 𝑂 log log 𝑟 times to be sure

Shor’s Algorithm: Quantum Part

31

Alg Order-Finding Quantum Algorithm

𝑞 ← smallest power of 2 with 𝑞 ≥ 𝑁2

return 𝑟

make uniform superposition in register 1:

1

𝑞

𝑎=0

𝑞−1

ȁ ۧ𝑎 ȁ ۧ0

compute ȁ ۧ𝑥𝑎 mod 𝑁 in register 2

perform Fourier transform in register 1

𝑐 ← observation result

𝑑/𝑟 ← round 𝑐/𝑞 to nearest frac w/ 𝑟 < 𝑁

repeat:

until we are confident

𝑂 log log 𝑟 iterations

Overall

overall # gates and running time
polynomial in log𝑁

ȁ ۧ𝑥𝑎 mod 𝑁 and QFT both use

𝑂 log𝑁 2 gates

Shor’s Algorithm: Non-Quantum Part

32

Alg Factorization [Miller’76]

if 𝑁 is even or a prime power, easily factorize 𝑁

repeat:

until confident

return prime

pick a random number 1 < 𝑥 < 𝑁

if GCD 𝑥,𝑁 ≠ 1

if 𝑟 is even and 𝑥𝑟/2 ≢ −1 mod 𝑁

𝑔 ← GCD 𝑥𝑟/2 − 1,𝑁

return 𝑔, 𝑁/𝑔

𝑔 ← GCD 𝑥,𝑁

return 𝑔, 𝑁/𝑔

𝑟 ← order of 𝑥 mod 𝑁

𝑙 ≜ # of iterations

Overall

Running time in 𝑂 𝑙 log𝑁 + 𝑞

if 𝑁 is composite, incorrect with
probability at most 1/2𝑙

if 𝑁 is prime, always correct

Running time of
quantum submodule
polynomial in log𝑁

From
Quantum Part

References

33

D. E. Knuth. The art of computer programming, vol. 2: seminumerical algorithms, second edition.
Addison-Wesley, 1981.

D. J. Bernstein. Detecting perfect powers in essentially linear time. Mathematics of Computation,
1998.

P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Computing, 1997.

G. H. Hardy and E. M. Wright. An introduction to the theory of numbers, fifth edition. Oxford
University Press, 1979.

	슬라이드 1: Shor’s Algorithm
	슬라이드 2: Quantum Computing Recap
	슬라이드 3: Quantum Computing Recap
	슬라이드 4: Preliminaries
	슬라이드 5: Problem: Integer Factorization
	슬라이드 6: Shor’s Algorithm: Overview
	슬라이드 7: Shor’s Algorithm: Non-Quantum Part
	슬라이드 8: Shor’s Algorithm: Non-Quantum Part
	슬라이드 9: Shor’s Algorithm: Non-Quantum Part
	슬라이드 10: Shor’s Algorithm: Non-Quantum Part
	슬라이드 11: Shor’s Algorithm: Non-Quantum Part
	슬라이드 12: Shor’s Algorithm: Non-Quantum Part
	슬라이드 13: Shor’s Algorithm: Non-Quantum Part
	슬라이드 14: Shor’s Algorithm: Quantum Part
	슬라이드 15: Shor’s Algorithm: Quantum Part
	슬라이드 16: Shor’s Algorithm: Quantum Part
	슬라이드 17: Shor’s Algorithm: Quantum Part
	슬라이드 18: Shor’s Algorithm: Quantum Part
	슬라이드 19: Shor’s Algorithm: Quantum Part
	슬라이드 20: Shor’s Algorithm: Quantum Part
	슬라이드 21: Shor’s Algorithm: Quantum Part
	슬라이드 22: Shor’s Algorithm: Quantum Part
	슬라이드 23: Shor’s Algorithm: Quantum Part
	슬라이드 24: Shor’s Algorithm: Quantum Part
	슬라이드 25: Shor’s Algorithm: Quantum Part
	슬라이드 26: Shor’s Algorithm: Quantum Part
	슬라이드 27: Shor’s Algorithm: Quantum Part
	슬라이드 28: Shor’s Algorithm: Non-Quantum Part
	슬라이드 29: Shor’s Algorithm: Non-Quantum Part
	슬라이드 30: Shor’s Algorithm: Quantum Part
	슬라이드 31: Shor’s Algorithm: Quantum Part
	슬라이드 32: Shor’s Algorithm: Non-Quantum Part
	슬라이드 33: References

