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Complex Number

Complex number. 𝑧 = 𝑎 + 𝑏𝑖 where 𝑎 and 𝑏 are real numbers.

- 𝑎 = 𝑅𝑒 𝑧 is the real part of 𝑧

- 𝑏 = 𝐼𝑚 𝑧 is the imaginary part of 𝑧

- 𝑧∗ ≔ 𝑎 − 𝑏𝑖 is the conjugate of 𝑧.

- 𝑧 = 𝑅𝑒 𝑧 2 + 𝐼𝑚 𝑧 2 = 𝑎2 + 𝑏2 is the magnitude of 𝑧.
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Complex Number

Let 𝑧 be a complex number i.e., 𝑧 = 1.

Then 𝒛 = 𝐜𝐨𝐬𝜽 + 𝒊 𝐬𝐢𝐧𝜽.
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𝑑𝑧

𝑑𝜃
= −sin 𝜃 + 𝑖 cos 𝜃 

𝑑𝑧

𝑑𝜃
= 𝑖 cos 𝜃 + 𝑖2 sin 𝜃 

𝑑𝑧

𝑑𝜃
= 𝑖 cos 𝜃 + 𝑖 sin 𝜃  

𝑑𝑧

𝑑𝜃
= 𝑖𝑧 ⟺

𝑑𝑧

𝑧
= 𝑖𝑑𝜃 ⟺ ׬

1

𝑧
𝑑𝑧 = ׬ 𝑖𝑑𝜃 ⟺ ln𝑧 = 𝑖𝜃 + 𝐶 

⟺ 𝑧 = 𝑒𝑖𝜃+𝐶 

𝑧 = 1 when 𝜃 = 0

∴ 𝒛 = 𝒆𝒊𝜽 



Euler’s Formula

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃

Note. 𝑒𝑖𝜃 = cos2 𝜃 + sin2 𝜃 = 1.
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for all real 𝜃



Qubits and Gates
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Qubit

The Qubit (short for quantum bit ).  𝜓 = 𝛼 0 + 𝛽 1

where 𝛼 and 𝛽 are complex numbers such that 𝛼 2 + 𝛽 2 = 1.

Let a ≔ 𝛼 and 𝑏 ≔ 𝛽 .

Using Euler’s formula, 𝛼 = 𝑎 ⋅ 𝑒𝑖𝜙1 and 𝛽 = 𝑏 ⋅ 𝑒𝑖𝜙2 for some 𝜙1 , 𝜙2 ∈ ℝ.

𝜓 =
𝛼

𝛽
=

𝑎 ⋅ 𝑒𝑖𝜙1

𝑏 ⋅ 𝑒𝑖𝜙2

Multiply by the unit scalar 𝑒𝑖𝜙 where 𝜙 ≔ 𝜙1 − 𝜙2 /2.

𝜓 =
𝑎 ⋅ 𝑒𝑖𝜙

𝑏 ⋅ 𝑒−𝑖𝜙
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𝛼 and 𝛽 are the (probability) amplitude

for the state 0 and 1 respectively.



Qubit

𝑎 = cos
𝜃

2
and 𝑏 = sin

𝜃

2
for some 𝜃 since 𝑎2 + 𝑏2 = 1.

𝜓 =
cos

𝜃
2 ⋅ 𝑒

𝑖𝜙

sin
𝜃
2 ⋅ 𝑒

−𝑖𝜙

Turns out to be...

1
𝜃
𝜙

∈ Bloch sphere ⟷ 𝜓 =
cos

𝜃
2 ⋅ 𝑒

𝑖𝜙

sin
𝜃
2
⋅ 𝑒−𝑖𝜙
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Unitary matrix

Unitary Matrix.   The matrix 𝑈 is unitary if 𝑈𝑈† = 𝑈†𝑈 = 𝐼 where 𝑈† is the conjugate transpose of 𝑈.

- 𝑈† ≔ 𝑈∗𝑇 is sometimes called Hermitian conjugate matrix or adjoint matrix.

Every quantum gate must be unitary.

Each unitary matrix is a possible quantum gate.

𝑈1 𝜆 =
1 0
0 −𝑒𝑖𝜆

𝑈2 𝜆, 𝜙 =
1

2

1 −𝑒𝑖𝜆

𝑒𝑖𝜙 −𝑒𝑖 𝜆+𝜙

𝑈3 𝜆, 𝜙, 𝜃 =
cos 𝜃/2 −𝑒𝑖𝜆 sin 𝜃/2

𝑒𝑖𝜙 sin 𝜃/2 −𝑒𝑖 𝜆+𝜙 cos 𝜃/2
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One Qubit Gate

𝑋 = 𝜎𝑥 =
0 1
1 0

- 𝛼 0 + 𝛽 1 ⟶ 𝜷 0 + 𝜶|1⟩

- “bit flip” operator
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Apply only to the binary values.
For general states, extend linearly.



One Qubit Gate

𝑍 = 𝜎𝑧 =
1 0
0 −1

- 𝛼 0 + 𝛽 1 ⟶ 𝜶 0 + −𝜷 |1⟩

- “phase flip” operator

𝑃 or 𝑅𝜃 =
1 0
0 𝑒𝑖𝜃

- “phase shift” operator

- 𝑍 = 𝑃𝜋

- 𝑆 = 𝑍 = 𝑃𝜋/2 =
1 0
0 𝑖
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One Qubit Gate

𝑌 = 𝜎𝑦 =
0 −𝑖
𝑖 0

- 𝛼 0 + 𝛽 1 ⟶ −𝒊𝜷 0 + 𝒊𝜶 1 ≅ 𝜷 0 − 𝜶 1

- “bit-and-phase flip” operator
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One Qubit Gate

𝐻 =
1

2

1 1
1 −1

- 𝛼 0 + 𝛽 1 ⟶
𝜶+𝜷

𝟐
0 +

𝜶−𝜷

𝟐
|1⟩
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One Qubit Gate

𝑅𝐴 𝜃 = 𝑒−
𝑖𝜃𝐴

2 or exp −
𝑖𝜃𝐴

2
= cos 𝜃/2 𝐼 − 𝑖 sin 𝜃/2 𝐴

where 𝐴 ∈ 𝑋, 𝑌, 𝑍

- rotation around 𝐴-axis

e.g.,

𝑅𝑥 𝜃 = exp −
𝑖𝜃𝑋

2
= exp −

𝑖𝜃

2
0 1
1 0

=
cos 𝜃/2 −𝑖 sin 𝜃/2
−𝑖 sin 𝜃/2 cos 𝜃/2
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Multi Qubits

“Ket 𝜓1 𝜓2” or “Ket 𝜓1 (tensor) Ket 𝜓2”

𝜓1𝜓2 = 𝜓1 ⊗ 𝜓2 =
𝛼1
𝛽1

⊗
𝛼2
𝛽2

=

𝛼1𝛼2
𝛼1𝛽2
𝛽1𝛼2
𝛽1𝛽2

= 𝛼1𝛼2 00 + 𝛼1𝛽2 01 + 𝛽1𝛼2 10 + 𝛽1𝛽2 11

Presented by Changyeol Lee



Multi-Qubit Gate

𝐴⊗𝐵 =
𝐴00

𝐵00 𝐵01
𝐵10 𝐵11

𝐴01
𝐵00 𝐵01
𝐵10 𝐵11

𝐴01
𝐵00 𝐵01
𝐵10 𝐵11

𝐴11
𝐵00 𝐵01
𝐵10 𝐵11

𝐴⊗𝐵 𝜓1𝜓2 = 𝐴 𝜓1 ⊗𝐵 𝜓2
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Multi-Qubit Gate

Controlled-X (when control bit is q[0]). 𝐶𝑋 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

Controlled-H (when control bit is q[1]). 

1 0

0 1/ 2

0 0

0 1/ 2
0 0

0 1/ 2

1 0

0 −1/ 2

Swap. SWAP =

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1
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Multi-Qubit Gate

Controlled-X (when control bit is q[0]). 𝐶𝑋 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

Controlled-H (when control bit is q[1]). 

1 0

0 1/ 2

0 0

0 1/ 2
0 0

0 1/ 2

1 0

0 −1/ 2

Swap. SWAP =

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1
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Multi-Qubit Gate

𝐻⊗𝐻⊗⋯⊗𝐻 𝜓 𝑛 = 𝐻⊗𝑛 𝜓 𝑛

= 𝐻⊗𝑛 𝑎0 0
𝑛 + 𝑎1 1

𝑛 +⋯+ 𝑎2𝑛−1 2
𝑛 − 1 𝑛

𝐻⊗𝑛 𝑥 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

−1 𝑥⊙𝑦 𝑦 𝑛

where ⊙ is the mod-2 dot product, i.e.,

𝑥 ⊙ 𝑦 = 𝑥𝑛−1𝑦𝑛−1⊕𝑥𝑛−2𝑦𝑛−2⊕⋯⊕𝑥0𝑦0
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Useful References
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Qiskit. Summary of Quantum Operations.

https://qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_operations.html

3Blue1Brown. How (and why) to raise e to the power of a matrix.

https://youtu.be/O85OWBJ2ayo?si=bNf0Jq-G-zo0Hc2X

javafxpert. Grokking the Bloch Sphere.

https://javafxpert.github.io/grok-bloch/

Michael Locef. A Course in Quantum Computing.

https://lapastillaroja.net/wp-content/uploads/2016/09/Intro_to_QC_Vol_1_Loceff.pdf



Quantum Oracle
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Quantum Oracle

Given 𝑓: 0,1 𝑛 → 0,1 𝑚 (or 𝑓: ℤ2𝑛 → ℤ2𝑚), the oracle 𝑼𝒇 is the following:

𝒙 𝒏 𝒚 𝒎
𝑼𝒇

𝒙 𝒏 𝒇 𝒙 ⊕ 𝒚 𝒎

where bit-wise mod-2 sum operator, i.e., 𝑓 𝑥 ⊕ 𝑦 𝑚 = 𝑓 x 𝑚−1⊕𝑦𝑚−1 ⋯|𝑓 x 0⊕𝑦0⟩.

E.g., 01⊕ 11 = 10

𝑈𝑓 is unitary and thus it is a valid quantum gate.
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Bernstein-Vazirani

Presented by Changyeol Lee



Bernstein-Vazirani Problem

Given an unknown unary function 𝑓: 0,1 𝑛 → 0,1

that are known to be an 𝑛 (binary) digit constant 𝑎

such that 𝑓 𝑥 = 𝑎 ⊙ 𝑥 for all 𝑥 ∈ 0,1 𝑛,

find 𝑎 in one query of 𝑈𝑓.
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With less than 𝑛 queries, it is forced to guess at least one coordinate of 𝑎. 

-> wrong with prob. at least 0.5

Classically, need linear queries.



Bernstein-Vazirani Problem

Given an unknown unary function 𝑓: 0,1 𝑛 → 0,1

that are known to be an 𝑛 (binary) digit constant 𝑎

such that 𝑓 𝑥 = 𝑎 ⊙ 𝑥 for all 𝑥 ∈ 0,1 𝑛,

find 𝑎 in one query of 𝑈𝑓.
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Analysis

𝐻⊗𝑛 0 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

−1 0⊙𝑦 𝑦 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛

𝐻 1 =
0 − 1

2
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𝐻⊗𝑛 𝑥 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

−1 𝑥⊙𝑦 𝑦 𝑛



Analysis

𝑈𝑓
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑈𝑓 𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
𝑓 𝑦 − ¬𝑓 𝑦

2
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Analysis

𝑈𝑓
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑈𝑓 𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
𝑓 𝑦 − ¬𝑓 𝑦

2
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Analysis

𝑈𝑓
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑈𝑓 𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
𝑓 𝑦 − ¬𝑓 𝑦

2
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𝑦 𝑛 ⊗
𝑓 𝑦 − ¬𝑓 𝑦

2
=

𝑦 𝑛 ⊗
0 − 1

2
, 𝑓 𝑦 = 0

𝑦 𝑛 ⊗
1 − 0

2
, 𝑓 𝑦 = 1



Analysis

𝑈𝑓
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑈𝑓 𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
𝑓 𝑦 − ¬𝑓 𝑦

2
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𝑦 𝑛 ⊗
𝑓 𝑦 − ¬𝑓 𝑦

2
=

𝑦 𝑛 ⊗
0 − 1

2
, 𝑓 𝑦 = 0

𝑦 𝑛 ⊗
1 − 0

2
, 𝑓 𝑦 = 1



Analysis

𝑈𝑓
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑈𝑓 𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
𝑓 𝑦 − ¬𝑓 𝑦

2
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−1 𝑓 𝑦 𝑦 𝑛 ⊗
0 − 1

2
𝑦 𝑛 ⊗

𝑓 𝑦 − ¬𝑓 𝑦

2
=



Analysis

𝑈𝑓
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑈𝑓 𝑦 𝑛 ⊗
0 − 1

2
=

1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗
𝑓 𝑦 − ¬𝑓 𝑦

2
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−1 𝑎⊙𝑦 𝑦 𝑛 ⊗
0 − 1

2
𝑦 𝑛 ⊗

𝑓 𝑦 − ¬𝑓 𝑦

2
=



Analysis

𝐻⊗𝑛
1

2

𝑛

෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 𝑦 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝐻⊗𝑛 −1 𝑎⊙𝑦 𝑦 𝑛 =
1

2𝑛
෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 ෍

𝑧=0

2𝑛−1

−1 𝑦⊙𝑧 𝑧 𝑛
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−1 𝑎⊙𝑦 𝑦 𝑛 ⊗
0 − 1

2
𝑦 𝑛 ⊗

𝑓 𝑦 − ¬𝑓 𝑦

2
=



Analysis

𝐻⊗𝑛
1

2

𝑛

෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 𝑦 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝐻⊗𝑛 −1 𝑎⊙𝑦 𝑦 𝑛 =
1

2𝑛
෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 ෍

𝑧=0

2𝑛−1

−1 𝑦⊙𝑧 𝑧 𝑛
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𝐻⊗𝑛 𝑦 𝑛 =
1

2

𝑛

෍

𝑧=0

2𝑛−1

−1 𝑦⊙𝑧 𝑧 𝑛



Analysis

𝐻⊗𝑛
1

2

𝑛

෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 𝑦 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝐻⊗𝑛 −1 𝑎⊙𝑦 𝑦 𝑛 =
1

2𝑛
෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 ෍

𝑧=0

2𝑛−1

−1 𝑦⊙𝑧 𝑧 𝑛
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𝐻⊗𝑛 𝑦 𝑛 =
1

2

𝑛

෍

𝑧=0

2𝑛−1

−1 𝑦⊙𝑧 𝑧 𝑛



Analysis

𝐻⊗𝑛
1

2

𝑛

෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 𝑦 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝐻⊗𝑛 −1 𝑎⊙𝑦 𝑦 𝑛 =
1

2𝑛
෍

𝑧=0

2𝑛−1

෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 −1 𝑦⊙𝑧 𝑧 𝑛
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𝐻⊗𝑛 𝑦 𝑛 =
1

2

𝑛

෍

𝑧=0

2𝑛−1

−1 𝑦⊙𝑧 𝑧 𝑛

𝐺 𝑧



Analysis

𝐻⊗𝑛
1

2

𝑛

෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 𝑦 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝐻⊗𝑛 −1 𝑎⊙𝑦 𝑦 𝑛 =
1

2𝑛
෍

𝑧=0

2𝑛−1

෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 −1 𝑦⊙𝑧 𝑧 𝑛

Consider when 𝑧 = 𝑎.

𝐺 𝑎 = ෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 −1 𝑦⊙𝑎 = ෍

𝑦=0

2𝑛−1

1 = 2𝑛,
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𝐻⊗𝑛 𝑦 𝑛 =
1

2

𝑛

෍

𝑧=0

2𝑛−1

−1 𝑦⊙𝑧 𝑧 𝑛

𝐺 𝑧



Analysis

𝐻⊗𝑛
1

2

𝑛

෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 𝑦 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝐻⊗𝑛 −1 𝑎⊙𝑦 𝑦 𝑛 =
1

2𝑛
෍

𝑧=0

2𝑛−1

෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 −1 𝑦⊙𝑧 𝑧 𝑛

Consider when 𝑧 = 𝑎.

𝐺 𝑎 = ෍

𝑦=0

2𝑛−1

−1 𝑎⊙𝑦 −1 𝑦⊙𝑎 = ෍

𝑦=0

2𝑛−1

1 = 2𝑛,

which means that the amplitude of 𝑎 is 1.
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𝐻⊗𝑛 𝑦 𝑛 =
1

2

𝑛

෍

𝑧=0

2𝑛−1

−1 𝑦⊙𝑧 𝑧 𝑛

𝐺 𝑧



Analysis

Observe 𝑎 with probability 1.
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Grover’s Algorithm
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Problem

Given a function 𝑓 x : 0,1 𝑛 → 0,1 , find an 𝑛-bit target string x∗ such that 𝑓 x∗ = 1

(where #targets is known).

Let 𝑁 = 2𝑛.

Requires 𝑂 𝑁 function calls in the classical model.

Grover’s Algorithm. Requires Θ 𝑁 calls to the quantum oracle.
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Grover operator 𝐺

Defn (Uniform superposition state).

𝜓 ≔
1

𝑁
෍

𝑖=0

𝑁−1

𝑖 𝑛

Defn (Grover operator).

𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑈𝑓

2 𝜓 𝜓 − 𝐼𝑁 on an arbitrary state 𝜙 𝑛 = σ𝑖 𝑎𝑖 𝑖
𝑛

2 𝜓 𝜓 − 𝐼𝑁 𝜙 𝑛 =෍

𝑖

2
𝑎0 +⋯+ 𝑎𝑁−1

𝑁
− 𝑎𝑖 𝑖 𝑛

𝜓 𝜓 =
1

𝑁

1 1 1
1 1 1
1 1 1

⋯
⋯
⋯

1
1
1

⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 ⋯ 1

𝐼𝑁 =

1 0 0
0 1 0
0 0 1

⋯
⋯
⋯

0
0
0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

𝐼2 =
1 0
0 1
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Grover’s Algorithm

Step 1. Perform state initialization 

- (𝑛 qubits) 00⋯0 ⟶ 𝜓

- (ancillary qubit) |0⟩ ⟶
0 − 1

2

Step 2. Apply Grover operator 
𝜋 𝑁

4
times

Step 3. Perform measurement on all qubit (except the ancillary qubit)
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Grover’s Algorithm

Step 1. Initialization

0 𝐻

0 𝐻

⋮ ⋮

0 𝐻

0 𝐻

0 𝑋𝑎𝑛𝑐𝑖𝑙𝑙𝑎

𝑞0

𝑞1

⋮

𝑞𝑛−2

𝑞𝑛−1

𝐻

0 + 1

2
 

0 + 1

2
 

⋮

0 + 1

2
 

0 + 1

2
 

0 − 1

2
 

𝜓

𝜓 ⊗
0 − 1

2
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Grover’s Algorithm

Step 2. Apply 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑈𝑓

𝑈𝑓
1

𝑁
00⋯00 + 00⋯01 +⋯+ 𝐱∗ +⋯+ 11⋯11 ⊗

0 − 1

2
 

=
1

𝑁
00⋯00 + 00⋯01 +⋯+ (−𝟏) x∗ +⋯+ 11⋯11 ⊗

0 − 1

2

x 𝑛 𝑞 ⟶ x 𝑛 𝑓 x ⊕ 𝑞

Presented by Changyeol Lee



Grover’s Algorithm

Step 2. Apply 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑈𝑓

2 𝜓 𝜓 − 𝐼𝑁
1

𝑁
00⋯00 + 00⋯01 +⋯+ −1 x∗ +⋯+ 11⋯11

2 𝜓 𝜓 − 𝐼𝑁 𝜙 𝑛 =෍

𝑖

2

𝑁
𝑎0 +⋯+ 𝑎𝑁−1 − 𝑎𝑖 𝑖 𝑛

=
1

𝑁

𝑁 − 4

𝑁
00⋯00 +⋯+

3𝑁 − 4

𝑁
x∗ +⋯+

𝑁 − 4

𝑁
11⋯11

amplified
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Grover’s Algorithm

Step 2. Apply 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑈𝑓 again

𝑈𝑓
1

𝑁

𝑁 − 4

𝑁
00⋯00 +⋯+

3𝑁 − 4

𝑁
x∗ +⋯+

𝑁 − 4

𝑁
11⋯11 ⊗

0 − 1

2
 

=
1

𝑁

𝑁 − 4

𝑁
00⋯00 +⋯+ (−𝟏)

3𝑁 − 4

𝑁
x∗ +⋯+

𝑁 − 4

𝑁
11⋯11 ⊗

0 − 1

2

flipped
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Grover’s Algorithm

Step 2. Apply 𝐺 ≔ 2 𝜓 𝜓 − 𝐼𝑁 ⊗ 𝐼2 𝑈𝑓 again

2 𝜓 𝜓 − 𝐼𝑁
1

𝑁

𝑁 − 4

𝑁
00⋯00 +⋯+ (−1)

3𝑁 − 4

𝑁
x∗ +⋯+

𝑁 − 4

𝑁
11⋯11

=
1

𝑁

𝑁2 − 12𝑁 + 16

𝑁2
00⋯00 +⋯+

5𝑁2 − 20𝑁 + 16

𝑁2
x∗ +⋯+

𝑁2 − 12𝑁 + 16

𝑁2
11⋯11

more amplified
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2 𝜓 𝜓 − 𝐼𝑁 𝜙 𝑛 =෍

𝑖

2

𝑁
𝑎0 +⋯+ 𝑎𝑁−1 − 𝑎𝑖 𝑖 𝑛



Grover’s Algorithm

Step 2. Apply 𝐺 fixed amount

informally
1

𝑁
𝜖 00⋯00 +⋯+ 𝑁 − 𝜖′ x∗ +⋯+ 𝜖 11⋯11

for some small 𝜖, 𝜖′.

amplified a lot
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Grover’s Algorithm

Step 3. Measurement

informally
1

𝑁
𝜖 00⋯00 +⋯+ 𝑁 − 𝜖′ x∗ +⋯+ 𝜖 11⋯11

Obtain |𝑥∗⟩ with probability close to 1.
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Geometric Analysis

Why applying Grover operator (exactly) 
𝜋 𝑁

4
times?

Let 𝜔 =
1

𝑁−1
σ𝑖 𝑖

𝑛 − |x∗⟩

Note. 𝜔 and |x∗⟩ are orthonormal.

Note. After the step 1, the state is 

1

𝑁
00⋯00 + 00⋯01 + 00⋯10 +⋯+ 11⋯1

=
𝑁 − 1

𝑁
𝜔 +

1

𝑁
x∗

= cos𝜃 𝜔 + sin 𝜃 x∗

|x∗⟩

|𝜔⟩𝜃
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What happens we apply 𝑈𝑓?

cos 𝜃 𝜔 + sin 𝜃 x∗ ⟶ cos𝜃 𝜔 − sin 𝜃 x∗

Applying 𝑈𝑓 =Reflection about |𝜔⟩

|x∗⟩

|𝜔⟩𝜃
𝜃

Presented by Changyeol Lee

Geometric Analysis



What happens we apply 2 𝜓 𝜓 − 𝐼𝑁 ?

Any state 𝜙 of this plane can be decomposed into

𝜙 = 𝛼 𝜓 + 𝛽|𝜓⊥⟩

Then,

Applying 2 𝜓 𝜓 − 𝐼𝑁 = Reflection about 𝜓

|x∗⟩

|𝜔⟩
|𝜓⟩

|𝜓⊥⟩

𝜃
2𝜃

𝜃

= 𝜶 𝝍 − 𝜷|𝝍⊥⟩

= 2𝛼 𝜓 − 𝛼 𝜓 + 𝛽 𝜓⊥

= 2𝛼 𝜓 𝜓 𝜓 + 2𝛽 𝜓 𝜓 |𝜓⊥⟩ − 𝛼 𝜓 + 𝛽 𝜓⊥

= 2 𝜓 𝜓 𝛼 𝜓 + 𝛽|𝜓⊥⟩ − 𝛼 𝜓 + 𝛽 𝜓⊥

2 𝜓 𝜓 − 𝐼𝑁 𝜙
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After first iteration,

cos 𝜃 𝜔 + sin 𝜃 x∗ ⟶ cos3𝜃 𝜔 + sin 3𝜃 x∗

After each iteration,

cos 5𝜃 𝜔 + sin 5𝜃 x∗

cos 7𝜃 𝜔 + sin 7𝜃 x∗

⋮

After applying 𝑘 times,

cos(𝜃 + 2𝑘𝜃) 𝜔 + sin(𝜃 + 2𝑘𝜃) x∗

|x∗⟩

|𝜔⟩𝜃
2𝜃

3𝜃

4𝜃

6𝜃
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Recall 
𝑁−1

𝑁
𝜔 +

1

𝑁
x∗ = cos 𝜃 𝜔 + sin 𝜃 x∗ .

- 𝜃 = arccos
𝑁−1

𝑁

Find 𝑘 such that 
𝜋

2
∼ (2𝑘 + 1) arccos

𝑁−1

𝑁

𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
𝜋

4
𝑁 −

1

2
− 𝑂 1/𝑁

|x∗⟩

|𝜔⟩𝜃
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Quantum Fourier Transform
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DFT

𝒟ℱ𝒯: ℂ2
𝑛
→ ℂ2

𝑛

where 𝑁 = 2𝑛 and 𝜔𝑁 = 1.

Note. 𝒟ℱ𝒯 is unitary.

𝒟ℱ𝒯 𝒄 𝑥 =
1

𝑁
෍

𝑦=0

𝑁−1

𝜔𝑥𝑦𝑐𝑦
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QFT

𝒬ℱ𝒯:𝐻 𝑛 → 𝐻 𝑛 or (𝑛-qubit) → (𝑛-qubit)

Let 𝜓 𝑛 ≔ σ𝑥=0
𝑁−1 𝑐𝑥 𝑥

𝑛.

𝒬ℱ𝒯 𝜓 𝑛 = 𝒬ℱ𝒯 ෍

𝑥=0

𝑁−1

𝑐𝑥 𝑥
𝑛 = ෍

𝑥=0

𝑁−1

𝒟ℱ𝒯 𝒄 𝑥 𝑥
𝑛 =

1

𝑁
෍

𝑥=0

𝑁−1

෍

𝑦=0

𝑁−1

𝜔𝑥𝑦𝑐𝑦 𝑥 𝑛
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QFT

𝒬ℱ𝒯:𝐻 𝑛 → 𝐻 𝑛 or (𝑛-qubit) → (𝑛-qubit)

Let 𝜓 𝑛 ≔ σ𝑥=0
𝑁−1 𝑐𝑥 𝑥

𝑛.

𝒬ℱ𝒯 𝜓 𝑛 = 𝒬ℱ𝒯 ෍

𝑥=0

𝑁−1

𝑐𝑥 𝑥
𝑛 = ෍

𝑥=0

𝑁−1

𝒟ℱ𝒯 𝒄 𝑥 𝑥
𝑛 =

1

𝑁
෍

𝑥=0

𝑁−1

෍

𝑦=0

𝑁−1

𝜔𝑥𝑦𝑐𝑦 𝑥 𝑛
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Period / Frequency

Suppose 𝑓 is periodic with period 𝑟 (or frequency 𝑀/𝑟).

Then መ𝑓 (the Fourier transform of 𝑓) is periodic with period 𝑀/𝑟 (or frequency 𝑟).
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Shor’s Periodicity Problem
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Periodic injective

A function 𝑓: ℤ𝑀 → 𝑆 where 𝑆 ⊂ ℤ𝑀 is called periodic injective

if there exists an integer 𝑎 ∈ ℤ𝑚 (called period)

such that for all 𝑥 ≠ 𝑦, we have 𝑓 𝑥 = 𝑓 𝑦 ⟺ 𝑦 = 𝑥 + 𝑘𝑎 for some integer 𝑘.
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periodic injective

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13

periodic but not injective



Problem

Let 𝑓: ℤ𝑀 → ℤ be periodic injective. Find 𝑎. (Assume 𝑎 < 𝑀/2.)

Let 𝑛 be an integer such that 2𝑛−1 < 𝑀2 ≤ 2𝑛.

WLOG, assume that range of 𝑓 is a subset of ℤ2𝑟 for some 𝑟

Let 𝑓: ℤ2𝑛 → ℤ2𝑟 be periodic injective. Find 𝑎.
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Analysis

𝐻⊗𝑛 0 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

−1 0⊙𝑦 𝑦 𝑛 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛
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Analysis

𝑈𝑓
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗ 0 𝑟 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑈𝑓 𝑦 𝑛 ⊗ 0 𝑟 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗ 𝑓 𝑦 𝑟
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Analysis

Let 𝑚 ≔ 𝑁/𝑎 . Let 𝑘 be an integer s.t. 𝑁 − 1 = 𝑎𝑚 + 𝑘.

0 𝑛 ⊗ 𝑓 0 𝑟 + 1 𝑛 ⊗ 𝑓 1 𝑟 +⋯⋯+ 𝑎 − 1 𝑛 ⊗ 𝑓 𝑎 − 1 𝑟 +

𝑎 𝑛 ⊗ 𝑓 0 𝑟 + 𝑎 + 1 𝑛 ⊗ 𝑓 1 𝑟 +⋯⋯+ 2𝑎 − 1 𝑛 ⊗ 𝑓 𝑎 − 1 𝑟 +

⋯

(𝑚 − 1)𝑎 𝑛 ⊗ 𝑓 0 𝑟 + 𝑚 − 1 𝑎 + 1 𝑛 ⊗ 𝑓 1 𝑟 +⋯⋯+ 𝑚 − 1 𝑎 − 1 𝑛 ⊗ 𝑓 𝑎 − 1 𝑟 +

𝑚𝑎 𝑛 ⊗ 𝑓 0 𝑟 + 𝑚𝑎 + 1 𝑛 ⊗ 𝑓 1 𝑟 +⋯+ 𝑚𝑎 + 𝑘 𝑛 ⊗ 𝑓 𝑘 𝑟
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෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗ 𝑓 𝑦 𝑟 = ෍

𝑦=0

𝑎−1

𝟏𝑦≤𝑘 𝑦 + 𝑚𝑎 𝑛 + ෍

𝑖=0

𝑚−1

𝑦 + 𝑖𝑎 𝑛 ⊗ 𝑓 𝑦 𝑟



Analysis

𝑈𝑓
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗ 0 𝑟 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑈𝑓 𝑦 𝑛 ⊗ 0 𝑟 =
1

2

𝑛

෍

𝑦=0

2𝑛−1

𝑦 𝑛 ⊗ 𝑓 𝑦 𝑟

=
1

2

𝑛

෍

𝑦=0

𝑎−1

𝟏𝑦≤𝑘 𝑦 + 𝑚𝑎 𝑛 + ෍

𝑖=0

𝑚−1

𝑦 + 𝑖𝑎 𝑛 ⊗ 𝑓 𝑦 𝑟
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Analysis

1

2

𝑛

෍

𝑦=0

𝑎−1

𝟏𝑦≤𝑘 𝑦 + 𝑚𝑎 𝑛 + ෍

𝑖=0

𝑚−1

𝑦 + 𝑖𝑎 𝑛 ⊗ 𝑓 𝑦 𝑟

𝑓 𝑦 𝑟 collapses to some 𝑦0 with probability 𝑚/𝑁 or  (𝑚 + 1)/𝑁.
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Analysis

𝒬ℱ𝒯
1

𝑚′
෍

𝑖=0

𝑚′−1

𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′
෍

𝑖=0

𝑚′−1

𝒬ℱ𝒯 𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′𝑁
෍

𝑥=0

𝑁−1

𝜔𝑦0𝑥 ෍

𝑖=0

𝑚′−1

𝜔𝑖𝑎𝑥 𝑥 𝑛
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Analysis

𝒬ℱ𝒯
1

𝑚′
෍

𝑖=0

𝑚′−1

𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′
෍

𝑖=0

𝑚′−1

𝒬ℱ𝒯 𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′𝑁
෍

𝑥=0

𝑁−1

𝜔𝑦0𝑥 ෍

𝑖=0

𝑚′−1

𝜔𝑖𝑎𝑥 𝑥 𝑛
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Analysis

𝒬ℱ𝒯
1

𝑚′
෍

𝑖=0

𝑚′−1

𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′
෍

𝑖=0

𝑚′−1

𝒬ℱ𝒯 𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′𝑁
෍

𝑥=0

𝑁−1

𝜔𝑦0𝑥 ෍

𝑖=0

𝑚′−1

𝜔𝑖𝑎𝑥 𝑥 𝑛
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Analysis

𝒬ℱ𝒯
1

𝑚′
෍

𝑖=0

𝑚′−1

𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′
෍

𝑖=0

𝑚′−1

𝒬ℱ𝒯 𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′𝑁
෍

𝑥=0

𝑁−1

𝜔𝑦0𝑥 ෍

𝑖=0

𝑚′−1

𝜔𝑖𝑎𝑥 𝑥 𝑛
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𝒬ℱ𝒯 𝑦0 + 𝑖𝑎 𝑛 =
1

𝑁
෍

𝑥=0

𝑁−1

𝜔 𝑦0+𝑖𝑎 𝑥 𝑥 𝑛 =
1

𝑁
෍

𝑥=0

𝑁−1

𝜔𝑦0𝑥𝜔𝑖𝑎𝑥 𝑥 𝑛



Analysis

𝒬ℱ𝒯
1

𝑚′
෍

𝑖=0

𝑚′−1

𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′
෍

𝑖=0

𝑚′−1

𝒬ℱ𝒯 𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′𝑁
෍

𝑥=0

𝑁−1
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Claim. “Some” 𝑥’s are “highly likely” to be measured!
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Claim. “Some” 𝑥’s are “highly likely” to be measured!

Consider 𝑥0, 𝑥1, ⋯ , 𝑥𝑎−1 where 𝑥𝑐𝑎 ∈ 𝑐𝑁 −
𝑎

2
, 𝑐𝑁 +

𝑎

2
for all 𝑐 = 0,⋯ , 𝑎 − 1. 

(Note. 𝑥𝑐𝑎 < 𝑎𝑁 and thus any 𝑥𝑐 is a candidate of the measurement.)

e.g., if 𝑁 = 32, 𝑎 = 3, 𝑥0 = 0, 𝑥1 = 11, 𝑥2 = 21
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Claim. “Some” 𝑥’s are “highly likely” to be measured!

Pr 𝑥 is measured =
1

𝑚′𝑁
𝜔𝑦0𝑥 2 ෍

𝑖=0

𝑚′−1

𝜔𝑖𝑎𝑥

2

=
1

𝑚′𝑁
෍

𝑖=0

𝑚′−1

𝜔𝑖𝑎𝑥

2

(since 𝜔 = 1)

Let 𝜇 ≔ 𝜔𝑎𝑥. 

෍

𝑖=0

𝑚′−1

𝜇𝑖 =
𝜇𝑚

′
− 1

𝜇 − 1
=
𝜔𝑎𝑥𝑚′

− 1

𝜔𝑎𝑥 − 1
=
𝑒𝑖𝜃𝑥𝑚

′
− 1

𝑒𝑖𝜃𝑥 − 1

where 𝜃𝑥 is the angle of 𝜔𝑎𝑥.
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Claim. “Some” 𝑥’s are “highly likely” to be measured!

Pr 𝑥 is measured =
1

𝑚′𝑁

𝑒𝑖𝜃𝑥𝑚
′
− 1

𝑒𝑖𝜃𝑥 − 1

2

-
2𝜃

𝜋
≤ 𝑒𝑖𝜃 − 1 = 2 sin

𝜃

2
≤ 𝜃
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Claim. “Some” 𝑥’s are “highly likely” to be measured!

Pr some 𝑥𝑐 is measured > 0.405
assuming 𝑎 ≪ 𝑀.



Analysis

𝒬ℱ𝒯
1

𝑚′
෍

𝑖=0

𝑚′−1

𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′
෍

𝑖=0

𝑚′−1

𝒬ℱ𝒯 𝑦0 + 𝑖𝑎 𝑛 =
1

𝑚′𝑁
෍

𝑥=0

𝑁−1

𝜔𝑦0𝑥 ෍

𝑖=0

𝑚′−1

𝜔𝑖𝑎𝑥 𝑥 𝑛

Presented by Changyeol Lee

One of 𝑥0, 𝑥1, ⋯ , 𝑥𝑎−1 where 𝑐𝑁 −
𝑎

2
≤ 𝑥𝑐𝑎 < 𝑐𝑁 +

𝑎

2
is highly likely to be measured.

Claim. 𝑥𝑐/𝑁 is uniquely close to 𝑐/𝑎.

𝑐𝑁 −
𝑎

2
≤ 𝑥𝑐𝑎 < 𝑐𝑁 +

𝑎

2
⟺ −

𝑎

2
≤ 𝑥𝑐𝑎 − 𝑐𝑁 <

𝑎

2
⟺ −

1

2𝑁
≤
𝑥𝑐
𝑁
−
𝑐

𝑎
<

1

2𝑁
⟺ 2

𝑥𝑐
𝑁
−
𝑐

𝑎
<
1

𝑁

2
𝑥𝑐
𝑁
−
𝑐

𝑎
<

1

𝑀2 𝑀2 ≤ 𝑁 and
1

𝑀2 ≤
𝑐 + 1

𝑎
−
𝑐

𝑎
𝑀2 ≤ 𝑁

Therefore, 𝑥𝑐/𝑁 is uniquely close to 𝑐/𝑎.
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One of 𝑥0, 𝑥1, ⋯ , 𝑥𝑎−1 where 𝑐𝑁 −
𝑎

2
≤ 𝑥𝑐𝑎 < 𝑐𝑁 +

𝑎

2
is highly likely to be measured.

𝑥𝑐/𝑁 is uniquely close to 𝑐/𝑎.

How to compute 𝑐/𝑎 from 𝑥𝑐? 

- By continued fraction algorithm (CFA).

- Starting from close point 𝑛0/𝑑0, compute 𝑛𝑘/𝑑𝑘
- Can be done in 𝑂(log3𝑁)
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One of 𝑥0, 𝑥1, ⋯ , 𝑥𝑎−1 where 𝑐𝑁 −
𝑎

2
≤ 𝑥𝑐𝑎 < 𝑐𝑁 +

𝑎

2
is highly likely to be measured.

𝑥𝑐/𝑁 is uniquely close to 𝑐/𝑎.

Find 𝑛/𝑑 which is equal to 𝑐/𝑎 by CFA.

So... what is the value of 𝑎?

No guarantee that 𝑐 corresponding to 𝑦𝑐 is coprime to 𝑎.

Therefore, not necessarily 𝑛 = 𝑐 and 𝑑 = 𝑎.

Claim. One of 𝑥0, 𝑥1, ⋯ , 𝑥𝑎−1 whose index is coprime to 𝑎 is highly likely to be measured!
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One of 𝑥0, 𝑥1, ⋯ , 𝑥𝑎−1 where 𝑐𝑁 −
𝑎

2
≤ 𝑥𝑐𝑎 < 𝑐𝑁 +

𝑎

2
is highly likely to be measured.

𝑥𝑐/𝑁 is uniquely close to 𝑐/𝑎.

Find 𝑛/𝑑 which is equal to 𝑐/𝑎 by CFA.

Claim 1. Pr(𝑥𝑐 measured) ≈ Pr(𝑥𝑐′ measured).

Claim 2. Pr(𝑐 coprime to 𝑎) ≥ 𝜁 2 > 0.6 where 𝑐~Uni 0, 𝑎 − 1 .
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One of 𝑥0, 𝑥1, ⋯ , 𝑥𝑎−1 where 𝑐𝑁 −
𝑎

2
≤ 𝑥𝑐𝑎 < 𝑐𝑁 +

𝑎

2
and 𝒄 is coprime to 𝒂 is highly likely to be measured.

𝑥𝑐/𝑁 is uniquely close to 𝑐/𝑎.

Find 𝑛/𝑑 which is equal to 𝑐/𝑎 by CFA.

𝑑 is the period!



Thank You
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