Quantum Finite State Automata

Sicheol Sung

October 2023

Introduction

We will see...

- 1. The definition of 2-way quantum FA (2QFA).
- 2. 2QFAs are strictly more powerful than 2-way probabilistic FAs, under bounded error and polynomial time constraints.
- 3. 1QFAs are strictly less powerful than DFAs.

Deterministic Finite State Automata

Definition (DFA)

A deterministic finite state automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of *states*;
- 2. Σ is a finite *input alphabet*;
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is a transition function;
- 4. $q_0 \in Q$ is the *initial state*; and
- 5. $F \subseteq Q$ is a set of *(final) accepting states.*

2-Way Deterministic Finite State Automata Definition

Definition (2DFA)

A 2-way deterministic finite state automaton (2DFA) is a 6-tuple $(Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$, where

- 1. $\delta: Q \times \Gamma \to Q \times \{-1, 0, 1\}$ is a *transition function*; and
- 2. $Q_{acc} \subseteq Q$ and $Q_{rej} \subseteq Q$ are the sets of *accepting states* and *rejecting states*, respectively.

2-Way Deterministic Finite State Automata Details

Details:

- 1. $Q_{\mathsf{non}} := Q \setminus (Q_{\mathsf{acc}} \cup Q_{\mathsf{rej}});$
- 2. $q_0 \in Q_{non};$
- 3. $Q_{\sf acc} \cap Q_{\sf rej} = \emptyset;$
- 4. $\mbox{$\varphi \notin \Sigma$ and $$} \mbox{$\notin \Sigma$ are the start of string and end of string symbols, respectively; and$
- 5. The tape alphabet $\Gamma := \Sigma \cup \{ c, \$ \}.$

2-Way Deterministic Finite State Automata Tapes

A *tape* is a mapping $x : \mathbb{Z}_n \to \Gamma$, where n =: |x| is the length of the tape. (At this point, we assume a circular tape.)

For a string $w = w_1 \cdots w_{|w|} \in \Sigma^*$, we define the tape x_w of w as

1.
$$x_w(0) := \emptyset$$
,
2. $x_w(i) := w_i$ for $1 \le i \le |w|$, and
3. $x_w(|w| + 1) := \$$.

2-Way Deterministic Finite State Automata Language of 2DFA

Fix a 2DFA $M := (Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$ and a tape x with length n. $C_n := Q \times \mathbb{Z}_n$ is the set of *configurations* of M.

The *time-evolution operator* $U_{\delta}^{x} : C_{n} \to C_{n}$ of M on tape x is defined as:

$$U^{\mathsf{x}}_{\delta}(q,k) := (p,k+d),$$

where $\delta(q, x(k)) =: (p, d) \in Q \times \{-1, 0, 1\}.$

For each time step t, let $(q_t, _-) := (U_{\delta}^{\times})^t (q_0, 0)$. If $q_t \in Q_{acc}$, then *M* accepts a string w at a time step t.

2-Way Probabilistic Finite State Automata Definition

Definition (2PFA)

A 2-way probabilistic finite state automaton (2PFA) is a 6-tuple $(Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$, where

 $\delta: (Q \times \Gamma) \times (Q \times \{-1, 0, 1\}) \to \mathbb{R}.$

A distribution of M on x is a probabilistic distribution $D: C_n \to \mathbb{R}$.

- 1. For each $c \in C_n$, $\llbracket c \rrbracket$ is denotes the distribution $c \mapsto 1$.
- 2. We can denote a distribution D by $\sum_{c \in C_n} p_c \cdot [[c]]$, where $p_c := D(c)$.

2-Way Probabilistic Finite State Automata Operator

$$\delta: (Q imes \Gamma) imes (Q imes \{-1, 0, 1\}) o \mathbb{R}$$

The operator $U^{\times}_{\delta}: D \mapsto U^{\times}_{\delta}D$ is defined as:

$$U^{\mathsf{x}}_{\delta}\llbracket q, k \rrbracket := \sum_{q', d} \delta(\underline{q, \mathsf{x}(k)}, \underline{q', d}) \cdot \llbracket q', k + d \rrbracket,$$

and is extended to all distributions of M on x by linearity.

$$(q_1)$$
 $a/R, 0.6$ q_2

Note

 δ is restricted to U^{\times}_{δ} be valid. What should the restriction be?

Known Results

Known results:

- 1. DFA and 2DFA have the same power of expression (regular).
- Under constant error bound and *exponential* expected time constraints, 2PFA can express the non-regular language {aⁿbⁿ | n > 0}.
- 3. Under constant error bound and *polynomial* expected time constraints, 2PFA cannot express non-regular languages.

Theorem (Dwork89)

For any 2PFA recognizing a non-regular language with a constant error bound, the 2PFA must take exponential expected time with respect to the length of the input. Definition of 2-Way Quantum Finite State Automata

Definition (2QFA) A 2-way quantum finite state automaton (2QFA) is a 6-tuple ($Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej}$), where

 $\delta: Q \times \Gamma \times Q \times \{-1, 0, 1\} \rightarrow \mathbb{C}.$

A superposition of M on x is a $|C_n|$ -dimensional quantum state.

- 1. \mathcal{H}_n denotes the set of all superpositions.
- 2. For each $c \in C_n$, $|c\rangle$ denotes the unit vector with value 1 at c.
- 3. For $|\psi\rangle = \sum_{c \in C_n} \alpha_c |c\rangle$, $\alpha_c \in \mathbb{C}$ is the *amplitude* of c in $|\psi\rangle$.

Transitions of 2QFA

$$\delta: (Q \times \Gamma) \times (Q \times \{-1, 0, 1\}) \to \mathbb{C}.$$

For a tape x, the *time-evolution operator* $U_{\delta}^{\times} : \mathcal{H}_n \to \mathcal{H}_n$ of M on tape x is defined as:

$$U^{\mathbf{x}}_{\delta}|\boldsymbol{q},\boldsymbol{k}
angle := \sum \delta(\underline{q},\mathbf{x}(\boldsymbol{k}),\underline{q}',\boldsymbol{d})\cdot|\boldsymbol{q}',\boldsymbol{k}+\boldsymbol{d}
angle,$$

and is extended to all $|\psi\rangle \in \mathcal{H}_n$ by linearity.

Note

- δ is restricted to U_{δ}^{\times} be valid, that is, U_{δ}^{\times} must be *unitary*.
- The configuration of *M* is in "superposition", we must "carefully observe" whether the configuration is accepting.

Observables

An observable \mathcal{O} is a decomposition $\{E_1, \ldots, E_k\}$ of the Hilbert space \mathcal{H}_n into subspaces, where

- $\mathcal{H}_n = E_1 \oplus E_2 \cdots \oplus E_k$; and
- \blacktriangleright E_j are pairwise orthogonal.

Consider that we observe $|\psi\rangle \in \mathcal{H}_n$ with an observable $\mathcal{O} = \{E_1, \dots, E_k\}.$

Let $|\psi_j\rangle$ be the projection of $|\psi\rangle$ onto E_j . Then, after the observation,

- 1. We observe each outcome j with probability $||\psi_j\rangle||^2$.
- 2. The machine "collapse" to $\frac{1}{\||\psi_i\rangle\|} |\psi_j\rangle$.

Note

It is similar to conditional probabilities.

Observables (Examples)

Let
$$|\psi\rangle = \frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$$
.

1. Using observable $\{\langle |00\rangle\rangle, \langle |10\rangle\rangle, \langle |01\rangle\rangle, \langle |11\rangle\rangle\}$, with the same probability 0.25,

• $|\psi\rangle$ collapses to $|00\rangle, |10\rangle, |01\rangle$, or $|11\rangle$.

- 2. Using observable $\{\langle |00\rangle, |10\rangle\rangle, \langle |01\rangle, |11\rangle\rangle\}$, with the same probability 0.5,
 - $|\psi\rangle$ collapses to $\frac{\sqrt{2}}{2}(|00\rangle + |10\rangle)$; or
 - $|\psi\rangle$ collapses to $\frac{\sqrt{2}}{2}(|01\rangle + |11\rangle).$

Observable of 2QFA

For a 2QFA *M* and an input *x*, we use an observable $\mathcal{O} := \{E_{acc}, E_{rej}, E_{non}\}$, where $E_{acc} := \langle C_{acc} \rangle$, $C_{acc} := Q_{acc} \times \mathbb{Z}_n$ (C_{acc} is the set of all accepting configurations); $E_{rej} := \langle C_{rej} \rangle$, $C_{rej} := Q_{rej} \times \mathbb{Z}_n$; and $E_{non} := \langle C_{non} \rangle$, $C_{non} := Q_{non} \times \mathbb{Z}_n$.

We will show that the 2QFA is more powerful than 2PFA by the following theorem.

Theorem (Kondacs97, Proposition 2)

For any error bound $\epsilon > 0$, there is a 2QFA M which recognizes $\{a^m b^m \mid m \ge 1\}$ with the one-sided error bound ϵ , in linear time with respect to the length of the input.

$\begin{array}{l} 2\mathsf{QFA} \ M_N \ \text{for} \ \{a^m b^m \mid m \geq 1\} \\ {}_{\mathsf{Definition}} \end{array}$

-		
	$ \begin{split} & V_{\mathbf{c}} q_0\rangle = q_0\rangle, \\ & V_{\mathbf{c}} q_1\rangle = q_3\rangle, \\ & V_{\mathbf{c}} r_{j,0}\rangle = \frac{1}{\sqrt{N}} \sum_{l=1}^{N} \exp\left(\frac{2\pi i}{N} j l\right) s_l\rangle, \ 1 \leq j \leq N, \end{split} $	$\begin{split} V_{\$} & q_0\rangle = q_3\rangle, \\ V_{\$} & q_2\rangle = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} r_{j,0}\rangle, \end{split}$
	$ \begin{array}{l} V_a \left q_0 \right\rangle = \left q_0 \right\rangle, \\ V_a \left q_1 \right\rangle = \left q_2 \right\rangle, \\ V_a \left q_2 \right\rangle = \left q_3 \right\rangle, \\ V_a \left r_{j,0} \right\rangle = \left r_{j,j} \right\rangle, \ 1 \le j \le N, \\ V_a \left r_{j,k} \right\rangle = \left r_{j,k-1} \right\rangle, \ 1 \le k \le j, \ 1 \le j \le N, \end{array} $	$ \begin{array}{l} V_b \left q_0 \right\rangle = \left q_1 \right\rangle, \\ V_b \left q_2 \right\rangle = \left q_2 \right\rangle, \\ V_b \left r_{j,0} \right\rangle = \left r_{j,N-j+1} \right\rangle, \ 1 \leq j \leq N, \\ V_b \left r_{j,k} \right\rangle = \left r_{j,k-1} \right\rangle, \ 1 \leq k \leq N-j+1, \ 1 \leq j \leq N, \end{array} $
	$D(q_0) = +1, D(q_1) = -1, D(q_2) = +1, D(q_3) = 0,$	$D(r_{j,0}) = -1, \ 1 \le j \le N,$ $D(r_{j,k}) = 0, \ 1 \le j \le N, \ k \ne 0,$ $D(s_j) = 0, \ 1 \le j \le N.$
		an a

Figure 1: Specification of the transition function of M_N .

The 2QFA M_N Overview 1

The 2QFA M_N Overview 2

The 2QFA M_N Phase 1

First, if the input is not in $\{a^nb^m \mid n, m > 0\}$, then rejects.

At the start of the next phase, the head is as above.

The 2QFA M_N Phase 2 (1)

The superposition consists of 0-column whose amplitude is $1/\sqrt{N}$ each at the beginning of phase 2.

The 2QFA M_N Phase 2 (2)

The 2QFA M_N Phase 2 (3)

- For *j*-th row, reaching the beginning of the tape takes $(j+1) \cdot n + (N-j+2) \cdot m$ steps.
- At the same time, the amplitude of $|r_{j,0}, 0\rangle$ is $1/\sqrt{N}$.

The 2QFA M_N Phase 2 (4)

• The amplitude of
$$|r_{j,0}, 0\rangle$$
 is $\frac{1}{\sqrt{N}}$, after $(j+1)n + (N-j+2)m$ steps.

Suppose that j-th and j'-th rows reach the beginning at the same time step. That is,

$$(j+1)n + (N-j+2)m = (j'+1)n + (N-j'+2)m$$

 $\iff (j-j')(m-n) = 0$

- 1. If m = n, the amp. of every $|r_{j,0}, 0\rangle$ is $\frac{1}{\sqrt{N}}$ at some time step t' in O(N(m + n)).
- 2. Otherwise, at most one amp. of $|r_{j,0}, 0\rangle$ is $\frac{1}{\sqrt{N}}$ at a time.

The 2QFA M_N Phase 3 (1)

1. If m = n, the amp. of every $|r_{j,0}, 0\rangle$ is $\frac{1}{\sqrt{N}}$ at some t'.

2. Otherwise, at most one amp. of $|r_{j,0}, 0\rangle$ is $\frac{1}{\sqrt{N}}$ at a time.

Finally, for a string $w = a^n b^n$, M_N accepts w at t' + 1.

The 2QFA M_N Phase 3 (2)

If $m \neq n$, consider each observation.

Let j' be the first row that reaches the beginning of the tape.

Note that the amplitude of $|j', 0\rangle$ is $\sqrt{\frac{1}{N}}$.

Then, at the next observation, one of the following happens.

We observe

- 1. "acc" and "rej" with probability $\frac{1}{N} \cdot \frac{1}{N}$ and $\frac{1}{N} \cdot \frac{N-1}{N}$, resp..
- 2. "non" with probability $1 \frac{1}{N} = \frac{N-1}{N}$. (Then, amp. of each config.s $|c\rangle \in C_{acc}$ are multiplied by $\sqrt{\frac{N}{N-1}}$)

For each *i*-th reaching, the above $\frac{1}{N}$'s are replaced by $\frac{1}{N-i+1}$'s. As a result, *M* wrongly accepts *w* with probability $\frac{1}{N}$. Some Languages of 2QFAs Are Not in Context-Free

Similarly, we can construct QFAs M_N for the non-context-free language $\{a^nb^nc^n \mid n > 0\}$.

2-Way Reversible Finite Automata

Recall the following definitions of 2QFAs.

$$\blacktriangleright \ \delta: (Q \times \Gamma) \times (Q \times \{-1, 0, 1\}) \to \mathbb{C}.$$

$$\blacktriangleright U_{\delta}^{\mathsf{x}}|q,k\rangle := \sum \delta(q,\mathbf{x}(k),q',d) \cdot |q',k+d\rangle.$$

• U_{δ}^{x} is unitary.

Definition (2RFA)

A 2-way reversible finite state automata (2RFA) is a 2QFA whose each transition amplitude is 0 or 1.

Note

For each configuration of 2RFA, the configuration has one unique "previous" configuration.

Reversible Simulation of 1DFAs

Theorem (Kondacs97, Proposition 4)

For any 1DFA A, there exists a 2RFA M which exactly recognize L(A) in linear time.

Construction of the 2RFA (1)

First, add some states for ¢ and \$.

Construction of the 2RFA (2)

- Fix arbitrary ordering for states.
- Split each state into two states.

Construction of the 2RFA (3)

Add b-transitions of states with the same target state.

Construction of the 2RFA (4)

► Add "reverse" b-transitions of the target states.

Construction of the 2RFA (5)

Add b-transitions for states without b-labeled in-transition.

Construction of the 2RFA (6)

Add a-transitions in a similar way.

Irreversibility of the DFA (1)

Suppose we reached the configuration $(q_6, j+1)$ from (q_1, j) .

Irreversibility of the DFA (2)

▶ We cannot determine a previous config. of the configuration.

Reversible Simulation using the 2RFA (1)

► In the 2RFA *M*, every valid configuration sequence reaching (q₆, j + 1) must passes (q₁₀, j).

Reversible Simulation using the 2RFA (2)

 A previous config. is *uniquely* determined for each config..
 The linear time comes from the num. of config.s. According to the pigeon hole principle, the number of steps more than configurations results in infinity loop.

1-Way Quantum Finite State Automata

Definition (1QFA)

A (measure-many) 1-way quantum finite state automata (1QFA) is a 2QFA $M = (Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$ that, for each $\sigma \in \Gamma$, there exists an unitary matrix $V_{\sigma} : Q \times Q \to \mathbb{C}$ satisfying

1.
$$\delta(q, \sigma, q', 1) = \langle q' | V_{\sigma} | q \rangle$$
, and
2. $\delta(q, \sigma, q', 0) = \delta(q, \sigma, q', -1) = 0$

Total-States and Computation of 1QFA

A *total-state* of an 1QFA *M* is $(\psi, p_{acc}, p_{rej}) \in \mathcal{V} := \ell_2(Q) \times \mathbb{R} \times \mathbb{R}$. Intuitively,

- 1. ψ denotes *unnormalized* superposition $|\psi\rangle$,
- 2. p_{acc} is the (accumulated) accepting probability, and
- 3. p_{rej} is the rejecting probability.

The intuition become clearer with the following operator T_{σ} .

$$\begin{split} \mathcal{T}_{\sigma} &: (\psi, p_{\mathsf{acc}}, p_{\mathsf{rej}}) \\ &\mapsto (P_{\mathsf{non}} V_{\sigma} \psi, \|P_{\mathsf{acc}} V_{\sigma} \psi\|^2 + p_{\mathsf{acc}}, \|P_{\mathsf{rej}} V_{\sigma} \psi\|^2 + p_{\mathsf{rej}}), \end{split}$$

where $P_{\rm acc}$, $P_{\rm rej}$ and $P_{\rm non}$ are the projection matrices onto $\langle Q_{\rm acc} \rangle$, $\langle Q_{\rm rej} \rangle$ and $\langle Q_{\rm non} \rangle$.

Total-States and Computation of 1QFA $_{\mbox{\sc Figure}}$

$$\begin{aligned} \mathcal{T}_{\sigma} &: (\psi, p_{\mathsf{acc}}, p_{\mathsf{rej}}) \\ &\mapsto (\mathcal{P}_{\mathsf{non}} \mathcal{V}_{\sigma} \psi, \|\mathcal{P}_{\mathsf{acc}} \mathcal{V}_{\sigma} \psi\|^{2} + p_{\mathsf{acc}}, \|\mathcal{P}_{\mathsf{rej}} \mathcal{V}_{\sigma} \psi\|^{2} + p_{\mathsf{rej}}), \end{aligned}$$

We define T_x for $x = \sigma_1 \cdots \sigma_n \in \sigma^*$ as $T_x = T_{\sigma_n} \cdots T_{\sigma_1}$.

Distance of Total-States

$$\begin{split} \mathcal{T}_{\sigma} &: \mathcal{V} : (\psi, p_{\mathsf{acc}}, p_{\mathsf{rej}}) \\ &\mapsto (P_{\mathsf{non}} V_{\sigma} \psi, \|P_{\mathsf{acc}} V_{\sigma} \psi\|^2 + p_{\mathsf{acc}}, \|P_{\mathsf{rej}} V_{\sigma} \psi\|^2 + p_{\mathsf{rej}}), \end{split}$$

For two total-states $v = (\psi, p_{acc}, p_{rej})$ and $v' = (\psi', p'_{acc}, p'_{rej})$, we define a *norm* of v as:

$$\|v\| := rac{1}{2} (\|\psi\| + |p_{\mathsf{acc}}| + |p_{\mathsf{rej}}|).$$

Then a *distance* between total-states v and v' is

$$d(v,v') := \|v-v'\|.$$

Reachable Total-States

If $v = T_{\mathbf{c}w} |q_0, 0, 0\rangle$ for some $w \in \Sigma^*$, we call v is *reachable* by w.

Let $\mathcal{B} := \{ v \in \mathcal{V} \mid ||v|| \le 1 \}.$ Clearly, any valid total-state v must be in \mathcal{B} .

Note that

 T_x increases the distance at most linearly: d(T_σv, T_σv') ≤ c ⋅ d(v, v'),
 A ⊂ B and ∃ε > 0, ∀v, v' ∈ A, d(v, v') > ε implies A is finite.

Construction of the DFA

1.
$$d(T_xv, T_xv') \leq c \cdot d(v, v')$$
, and
2. $A \subset B$ and $\exists \epsilon > 0, \forall v, v' \in A, d(v, v') > \epsilon$ implies A is finite.

Fix an (two-sided) error bound $\epsilon > 0$. Total-states v and v' are distinguishable if there exists $y \in \Sigma^*$ such that

1. accepting probability of $T_{v\$}v$ is greater than $\frac{1}{2} + \epsilon$, and

2. accepting probability of $T_{y\$}v'$ is less than $\frac{1}{2} - \epsilon$, or vice versa.

- 1. Note that $2\epsilon < d(T_{y\$}v, T_{y\$}v')$ by the definition.
- 2. From the bound of $T_{y\$}$ (in 1. above), $\frac{2\epsilon}{c} < d(v, v')$.
- 3. Thus, by the finiteness (in 2. above) a set of distinguishable-and-reachable total-states is finite.

Limitation of 1QFA

1QFA cannot recognize $L = \{a, b\}^* a$ with a bounded error.

Let
$$\psi_{\mathsf{x}} := (P_{\mathsf{non}} V_{\sigma_n})(P_{\mathsf{non}} V_{\sigma_{n-1}}) \cdots (P_{\mathsf{non}} V_{\sigma_1}) |q_0\rangle.$$

- 1. Let $\mu = \inf\{\|\psi_{\mathbf{f}w}\| \mid w \in \{a, b\}^*\}$. If $\mu = 0$, M cannot recognize L with a bounded error. So we may assume $\mu > 0$.
- 2. Let $\xi > 0$, and choose w such that $\|\psi_{\mathbf{t}w}\| < \mu + \xi$.
- 3. Then, $\mu \leq \|\psi_{\textbf{fwy}}\| < \mu + \xi$ for every $y \in \{a, b\}^*$.
- 4. Specifically, for any $j \ge 0$,

$$\mu \leq \psi_{\mathbf{c}wab^{j}} = \| (P_{\mathrm{non}} V_{b})^{j} \psi_{\mathbf{c}wa} \| < \mu + \xi.$$

5. Fix j, k satisfying $\|\psi_{\mathbf{c}wab^{i}} - \psi_{\mathbf{c}wab^{k+j}}\| < \xi$. 6. Then,

$$\begin{split} \|\psi_{\bigstar wa} - \psi_{\bigstar wab^k}\| &< c' \cdot \xi^{1/4} \\ \implies d(\mathcal{T}_{\bigstar wa\$}(|q_0\rangle, 0, 0), \mathcal{T}_{\bigstar wab^k\$}(|q_0\rangle, 0, 0)) < c'' \cdot \xi^{1/4}. \end{split}$$

Thank you for your attention!

Any Questions?