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Introduction

We will see...
1. The definition of 2-way quantum FA (2QFA).

2. 2QFAs are strictly more powerful than 2-way probabilistic FAs,
under bounded error and polynomial time constraints.

3. 1QFAs are strictly less powerful than DFAs.
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Deterministic Finite State Automata

Definition (DFA)
A deterministic finite state automaton (DFA) is a
5-tuple (Q, X, 0, o, F), where

1. Q is a finite set of states;

2. X is a finite input alphabet,

3. 0: Q x X — Q is a transition function;

4. qo € Q is the initial state; and

5. F C Q is a set of (final) accepting states.
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2-Way Deterministic Finite State Automata

Definition

Definition (2DFA)
A 2-way deterministic finite state automaton (2DFA) is a
6-tuple (Q, X, 9, go, Qacc, Qrej), Where

1. 6: QxI— Qx{—1,0,1} is a transition function; and

2. Qacc € Q and Qgj € Q are the sets of accepting states and

rejecting states, respectively.
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2-Way Deterministic Finite State Automata

Details

Details:

1.

Qnon = Q \ (Qacc U Qrej);

2. qo € Qnon;
3.
4. ¢ ¢ ¥ and $ ¢ X are the start of string and end of string

Racc N Qrej =0

symbols, respectively; and
The tape alphabet I := ¥ U {¢, $}.
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2-Way Deterministic Finite State Automata
Tapes

A tape is a mapping x : Z, — I, where n =: |x| is the length of
the tape. (At this point, we assume a circular tape.)

For a string w = wq - - - w},,| € L, we define the tape x,, of w as
1. xw(0) :=¢,
2. xw(i) == w; for 1 < i< |wl|, and
3. xw(|lw|+1) :=5.
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2-Way Deterministic Finite State Automata
Language of 2DFA

Fix a 2DFA M := (Q, X, d, qo, Qacc, Qrej) and a tape x with
length n. C, := Q X Z, is the set of configurations of M.

The time-evolution operator U§ : C, — C, of M on tape x is
defined as:
U5 (g, k) == (p, k + d),

where 0(q, x(k)) =: (p,d) € Q x {—1,0,1}.

For each time step t, let (g, -) := (U5)*(qo,0).
If gt € Qacc, then M accepts a string w at a time step t.
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2-Way Probabilistic Finite State Automata

Definition

Definition (2PFA)
A 2-way probabilistic finite state automaton (2PFA) is a
6-tuple (Q, %, 4, qo, Qacc; Qrej): where

0:(@xT)x(Qx{-1,0,1}) = R.

A distribution of M on x is a probabilistic distribution D : C,, — R.
1. For each ¢ € C,, [c] is denotes the distribution ¢ + 1.

2. We can denote a distribution D by > pc - [c],
where p. := D(c).
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2-Way Probabilistic Finite State Automata

Operator

0:(@xTN)x(Qx{-1,0,1}) >R

The operator U : D — U5 D is defined as:

Usllg. k1 =" d(q.x(k).q'.d) - [q, k + ],
q’,d

and is extended to all distributions of M on x by linearity.

(0)72"{a2)
Note

d is restricted to Uy be valid. What should the restriction be?
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Known Results

Known results:
1. DFA and 2DFA have the same power of expression (regular).

2. Under constant error bound and exponential expected time
constraints, 2PFA can express the non-regular
language {a"0" | n > 0}.

3. Under constant error bound and polynomial expected time
constraints, 2PFA cannot express non-regular languages.

Theorem (Dwork89)

For any 2PFA recognizing a non-regular language with a constant
error bound, the 2PFA must take exponential expected time with
respect to the length of the input.
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Definition of 2-Way Quantum Finite State Automata

Definition (2QFA)
A 2-way quantum finite state automaton (2QFA) is a
6-tuple (Qa 2,9, 90, Qacc, Qrej), where

J:QxIx@Qx{-1,0,1} — C.

A superposition of M on x is a |C,|-dimensional quantum state.

1. H, denotes the set of all superpositions.
2. For each ¢ € G, |c) denotes the unit vector with value 1 at c.

3. For [¢) = > ccc, @clc), ac € Cis the amplitude of ¢ in [1)).
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Transitions of 2QFA

0:(QxTI)x(Qx{-1,0,1}) —» C.

For a tape x, the time-evolution operator U§ : H, — H, of M on
tape x is defined as:

Uslg, k) == 8(a.x(k),q'.d) - ¢, k + d),

and is extended to all |¢)) € H,, by linearity.
Note
» 0 is restricted to U5 be valid, that is, Uy must be unitary.

» The configuration of M is in “superposition”, we must
“carefully observe” whether the configuration is accepting.
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Observables

An observable O is a decomposition {Ej, ..., Ex} of the Hilbert
space H, into subspaces, where

> Ho=E1 @ Ey--- P E; and

» E; are pairwise orthogonal.

Consider that we observe |¢)) € H, with an
observable O = {£y,..., E}.

Let [¢);) be the projection of |¢) onto E;.
Then, after the observation,

1. We observe each outcome j with probability |||1,Z)J>||2
2. The machine “collapse” to H|T1>HW)J>
J

Note
It is similar to conditional probabilities.
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Observables (Examples)

Let [¢) = 3]00) + 3(01) + |10) + 3[11).
1. Using observable {(]|00)), (|10)), (|01)), (|]11))}, with the same
probability 0.25,
> |¢) collapses to |00),[10),|01), or |11).

2. Using observable {(|00),|10)), (|01), |11))}, with the same
probability 0.5,

> |¢) collapses to g(\OO) +1(10)); or
> |9) collapses to §(|01) +(11)).
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Observable of 2QFA

For a 2QFA M and an input x,
we use an observable O := {E,cc, Eej, Enon}, where

> Eci= <Cacc>: Cacc '= Qacc X Zpy
(Cacc is the set of all accepting configurations);

> Erej = <Crej>v C.rej = Qrej X Zp; and
> Enon = <Cnon>v Cnon = Qnon X L.

Eacc
Observation

)
Ei — |Llf'l>:_
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Expressiveness of 2QFAs

We will show that the 2QFA is more powerful than 2PFA by the
following theorem.

Theorem (Kondacs97, Proposition 2)

For any error bound € > 0, there is a 2QFA M which recognizes
{a™b™ | m > 1} with the one-sided error bound €, in linear time
with respect to the length of the input.
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2QFA My for {a™b™ | m > 1}

Definition

Ve |g0) = |40,
Ve g1} = |aa)
Ve |rio) = 7‘3
Valgo) = iqn)..
Va |nn) = |g2)s
Va la2) = lea),
Valrso) = |rs,

5

Digo) = +1,
D(q) = -1,
D(g2) = +1,
D(gs) =0,

Tiliexo (50 s}, 155 < W,

iy, 1<i<N,

Valrik) =|rik-1), 1<Sk<j1<j<N,

Vs |90} = |gs),
W la2) = o L o)y

Ve lgo) = |a),
Vi |g2) = |a2)s
Vo lrjo) = [rin—js1), LSS <N,

Valrjey = |rip-1) 1S kSN —j+1,1<j <N,

D(rjp)=-1,1<j<N,
D(rje)=0,1<j <N, k#0,
D(s;)=0,1<j<N.

Figure 1: Specification of the transition function of Mx.
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The 2QFA My,

Overview 1

$/S

¢/S
b/R L
a/R alS .

$ILNVN

~00@®
~00@®

18/47



The 2QFA My,

Overview 2

a,b/S
v e O30

b/S b/S

N—j+1- j+1

. : state 10
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The 2QFA My,

Phase 1

$/S

¢/S

oo~

$/L,1/VN

» First, if the input is not in {a"™ | n, m > 0}, then rejects.

n m |

\
\ \
Le[ala] ~ [2fvfe] - [v]s]

A

head

P At the start of the next phase, the head is as above.
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The 2QFA My,

Phase 2 (1)
$/L,1/W?
-1 000000 00®
2 00000000
. 0606000
000000 ..
00 000 =
000008 "
© 000 00®
00 000 -00®
QQQ 000000

» The superposition consists of 0-column whose amplitude is
l/m each at the beginning of phase 2.
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The 2QFA My,

Phase 2 (2)
b/S
a,b/S a,b/L| ¢/S
o w0 O | @ s
b/S b/S QFT
[ a/s | [
N—j+1- j+1 j - 1 0

j% (cell/step)

N—1j+2 (cell /step) ‘
| - |

¢ a a a b b b $
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The 2QFA My,

Phase 2 (3)

j%(cell/step) /\/—1/+2 (cell /step)
| - | -« |

n m
» For j-th row, reaching the beginning of the tape takes

(+1)-n+ (N —j+2)- m steps.
> At the same time, the amplitude of |r; o, 0) is 1/v/N.
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The 2QFA My,

Phase 2 (4)

» The amplitude of |rj,0) is ﬁ

(J+1)n+ (N —j+2)m steps.

after

Suppose that j-th and j’-th rows reach the beginning at the same
time step. That is,

G+Dn+(N—j+2)m=(G"+1)n+(N—j +2)m
— (- m—-n)=0

1. If m = n, the amp. of every |rjo,0) is ﬁ
at some time step t’ in O(N(m + n)).
1

2. Otherwise, at most one amp. of |rj,0) is Iy ata time.
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The 2QFA My,

Phase 3 (1)

1. If m = n, the amp. of every |r;,0) is —= at some t'.

3

2. Otherwise, at most one amp. of |rj,0) is ﬁ at a time.

J

900 00 2000 00

rio's QFT

Finally, for a string w = a"b", My accepts w at t’' + 1.
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The 2QFA My,

Phase 3 (2)

If m # n, consider each observation.
Let j/ be the first row that reaches the beginning of the tape.

Note that the amplitude of |/, 0) is \/%
Then, at the next observation, one of the following happens.

We observe

1 N-1
and N resp..

2\

1. "acc” and “rej” with probability N
N

2. “non” with probability 1 — /{/ = —1

(Then, amp. of each config.s |c) € Ca,CC are multiplied by |/ +5)

For each i-th reaching, the above + ~ s are replaced by ,H’s.
As a result, M wrongly accepts w with probability + N
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Some Languages of 2QFAs Are Not in Context-Free

Similarly, we can construct QFAs My for the non-context-free
language {a"0"c” | n > 0}.
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2-Way Reversible Finite Automata

Recall the following definitions of 2QFAs.
> 0 (QxTI)x(Qx{-1,0,1}) —» C.
> Uflq, k) :==>6(q,x(k),q’,d)-|q',k+ d).
» U5 is unitary.

Definition (2RFA)
A 2-way reversible finite state automata (2RFA) is a 2QFA whose
each transition amplitude is 0 or 1.

Note
For each configuration of 2RFA,
the configuration has one unique “previous” configuration.
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Reversible Simulation of 1DFAs

Theorem (Kondacs97, Proposition 4)

For any 1DFA A, there exists a 2RFA M which exactly recognize
L(A) in linear time.
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Construction of the 2RFA (1)

DFA A

O-0 O

First, add some states for ¢ and $.
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Construction of the 2RFA (2)

o (I
»O: IR

o o o O O O o O

o O o O O O O O

» Fix arbitrary ordering for states.

» Split each state into two states.
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Construction of the 2RFA (3)

» Add b-transitions of states with the same target state.
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Construction of the 2RFA (4)

> Add “reverse” b-transitions of the target states.
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Construction of the 2RFA (5)

OOO—;O(%»O---O—;O

» Add b-transitions for states without b-labeled in-transition.
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Construction of the 2RFA (6)

@)

ab b b b b ab *O:—/R
O @ a a
o O ('}»(}»(}»(}»

» Add a-transitions in a similar way.
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Irreversibility of the DFA (1)

» Suppose we reached the configuration (ge,j + 1) from (g1, /).
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Irreversibility of the DFA (2)

» We cannot determine a previous config. of the configuration.
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Reversible Simulation using the 2RFA (1)

» In the 2RFA M, every valid configuration sequence
reaching (g6, + 1) must passes (qgio,).
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Reversible Simulation using the 2RFA (2)

(g2, —=1)

» A previous config. is uniquely determined for each config..

» The linear time comes from the num. of config.s.
According to the pigeon hole principle, the number of steps
more than configurations results in infinity loop.
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1-Way Quantum Finite State Automata

Definition (1QFA)

A (measure-many) 1-way quantum finite state automata (1QFA) is
a 2QFA M = (Q, X, 9, qo, Qacc, Qrej) that, for each o € T, there
exists an unitary matrix V, : @ x Q — C satisfying

1. 6(q,0,9',1) = (¢'|Vs|q), and
2. 6(q,0,4',0) =6(q,0,¢',~1) = 0.
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Total-States and Computation of 1QFA

A total-state of an 1QFA M is (¢, pacc, prej) € V i= lo(Q) x R x R.

Intuitively,
1. 1) denotes unnormalized superposition |1)),
2. Pacc is the (accumulated) accepting probability, and
3. prej is the rejecting probability.

The intuition become clearer with the following operator T,.

Tcr : (@Z},pacmprej)
= (Pnon Vowa H'Dacc V0¢H2 + Pacc, HPrej V0¢H2 + Prej)a

where Picc, Prej and Pyon are the projection matrices

onto (Qacc), (Qrej) and (Qnon)-
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Total-States and Computation of 1QFA
Figure

<Qacc>

T, VDpac

TU : (¢7paCCaprej)
— (Pnon Vo, H'Dacc VawHZ + Pacc, H'Drej Vcﬂ/JH2 + prej)a

We define Ty for x =01---op €0 as Ty = T,, -+ Ty,.
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Distance of Total-States

To:V: (wapaccaprej)
= (Pnon Vo, HPacc Vasz ~+ Pacc; HPrej Va¢“2 + Prej)7

For two total-states v = (4, Pacc, Prej) and v/ = (¢, Pliccs pﬁej),
we define a norm of v as:

1
”VH = §(WH + ‘pacc| + |prej‘)-
Then a distance between total-states v and v’ is

d(v,v'):=|v—V|.
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Reachable Total-States

If v =Tg¢wlqo,0,0) for some w € *, we call v is reachable by w.

Let B:={veV]||v| <1}
Clearly, any valid total-state v must be in B.

Note that

1. T increases the distance at most linearly:
d(Tov, T,V') < c-d(v,V),
2. AC Band 3¢ > 0,Vv,v' € A d(v, V') > e implies A is finite.
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Construction of the DFA

1. d(Tyv, TxV') < c-d(v,V), and
2. AC Band 3¢ > 0,Vv,v' € A, d(v, V') > e implies A is finite.

Fix an (two-sided) error bound € > 0. Total-states v and v/ are
distinguishable if there exists y € £* such that

1. accepting probability of T gv is greater than % + €, and
2. accepting probability of T gV’ is less than % — €,

or vice versa.

1. Note that 2e < d(T4v, T,gv’) by the definition.
2. From the bound of T 4 (in 1. above), % < d(v, V).

3. Thus, by the finiteness (in 2. above)
a set of distinguishable-and-reachable total-states is finite.
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Limitation of 1QFA

1QFA cannot recognize L = {a, b}*a with a bounded error.

Let ¢x := (Pnon Vo, ) (Pron Ve, 1)+ + * (Pron Vo ) q0)-
1. Let p = inf{||¢¢n| | w € {a,b}*}. If 4 =0, M cannot

recognize L with a bounded error. So we may assume g > 0.

2. Let £ >0, and choose w such that |[¢g,, || < p+ €.
3. Then, p < |[Ygwy || < p+ & for every y € {a, b}*.
4. Specifically, for any j > 0,

< ¢¢wabi = ”(Pnon Vb)j¢¢wa|| <p+é

5. Fix j, k satisfying [[{¢uan — Vgpapis|l < &
6. Then,

||¢¢Wa - w(twabk ” < C/ : 51/4
g d( T¢W3$(|q0>7070)? T¢Wabk$(|q0>’070)) < " ‘51/4'
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Thank you for your attention!

Any Questions?
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