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Computability

Computability

Problem
Is a given function f : N — N computable?

Example
PRIMES : N — {0,1} is computable.

Example

Let the ‘busy beaver’ BB : n — BB(n) be the maximum number of nonzero
output symbols of n-state Turing machine over a binary alphabet. Then, BB is
incomputable [Rad62].

4 5
13 > 4098

n_|
BB(n) |

1 2 3
1 4 6

Table: First five values of the busy beaver
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Computability

Turing machine

Let 3 = {0,1} denote a binary alphabet throughout this talk.
Turing machine (TM): A (determinstic) Turing machine M = (Q, E, i, f)
consists of:

> A finite set () of states,

> A transition function EC Q x X x Q x ¥ x {—1 1} — {0 1} of transitions
that satisfies a condition: V(g,0), =, - 4 E(q,a q,0',d) <1.

> An initial state ¢ € ) and a final, accepting state f € Q,
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Computability

Configuration of TM

Configuration: A configuration of TM M = (Q, E, 1, f) is an element of
set C = Q x Z x %% that describes the current circumstance of M.

q

<

o010 1 110]0

Configuration: (g,1,110)

Figure: lllustration of a Turing machine, the red cell denotes the initial head position, i.e.
the beginning of input.
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Computability

Semantics of TM

Derivation: If two configurations ¢; = (¢, z,w) and ¢3 = (¢, 2’, w’) satisfy:

> E(q,ws,q,w,,d) =1 (M follows the transition),
> 2+ d=2z' (Head moves) and
> w, = w, if y # . (Not modifying other cells),
we say ¢1 Faq co.
F\( is a transitive and reflexive closure of .
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Computability

Computation

Computation: a sequence of configurations.

Valid computation: a computation C' = cjcs ... satisfying ¢; Faq ¢;41 for all 4.

Accepting computation: A valid computation C = ¢yc; .. . ¢, is accepting if
¢o = (4,0, w) and, the state of ¢, is final and only the state is final.
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Computability

Language of TM

Language: Given a TM M = (Q, E, 1, f), its language L(M) is
L(M) = {w € ¥* | Jacc. comp. of ¢y = (i,0,w) and ¢, = (f,0,w)},

where w’ € 3*.

When we consider such M as a function, we say that M(w) = w’.
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Computability

Computability

Church-Turing Thesis

A function f : N — N can be effectively computable if and only if it is computable
by a Turing machine.

Here, effectively means that the computation of f is deterministic and it
eventually terminates, giving an output.
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Computability

Complexity

Complexity class: a set of languages (a.k.a. functions) satisfying specific
properties.

> ALL: all languages.
» RE: languages recognizable by a Turing machine.
» R: languages decidable by a Turing machine.

» P: languages decidable by a polynomial-time Turing machine.
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Computability

Overview of complexity hierarchy

ALL = 2%

Recursively Enumera ble
!
!
'

» BB isin ALL \ RE.

Recursive = Decidable

1 » HALT and PCP are in RE \ R.

PSPACE » PRIMES is in P [AKSO04].

(Dashed lines denote proper inclusions.)
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Computability

Nondeterminism

Nondeterministic TM: A nondeterministic TM (NTM) M = (Q, E,4, f) is a
DTM without the determinism condition on E.

PSPACE _xpspace

NP

P
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Computability

To quantum era

» How we can inject the quantum concepts in TM?

> Will the model be more powerful (or less powerful) than classical TM?
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Quantum Turing machine

Quantum Turing machine

Quantum TM: A quantum TM (QTM) Q = (Q, U, 1, f) has four
components (c.f. TM M = (Q, E, i, f)):

> A finite set Q of states.

» A complex-valued unitary matrix U.
» An initial state i € Q.

» A final, accepting state f € Q.
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Quantum Turing machine

Configuration of QTM

Let H 4 be a Hilbert space containing A.

A configuration (g, z,w) € Q x Z x X% of Q is encoded into (infinite) qubits as
lg; z;w) = |¢) @ |z) @ |w) € Ho & Hz & Hye.

Note that, even we describe a QTM configuration in infinite qubits, we only use a
finite portion of them to compute effectively.
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Quantum Turing machine

The unitary operation

Starting from an initial superposition |¢)(0)) at time 0, the unitary operator U
maps its superposition |¢(T)) at time T as (c.f., Schrodinger eq.):

(1)) = U 14(0)),

where the initial superposition |1(0)) is

defZA lq0; 0; w) ZIIA I” =
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Quantum Turing machine

Checking the end of computation

We can use a special qubit denoting the end of computation to check whether the
machine terminated or not.
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Quantum Turing machine

Circuit diagram

end-of-comp. - -

57|
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Quantum Turing machine

Question: U unitary fora TM M?

For any pure quantum state |g; 2; w), U need to satisfy

(¢'s 2" w'|U|q; 2;w)
= [00r 01U (¢, W}, | @ W) + 62 01U (¢ w0y, | vaw)]Hgﬁéz Ouwy w,

where U*(¢',0" | q,0) is a {0, 1}-valued function:

1
Ui(q/; 0/ | q; U) = 5q’,A(q,a) . 50/,B(q,a) : 5[1 + C(qvw)]
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Quantum Turing machine

Question: U unitary fora TM M?

For any pure quantum state |g; 2; w), U need to satisfy
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Quantum Turing machine
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Quantum Turing machine

Question: U unitary fora TM M?

For any pure quantum state |g; 2; w), U need to satisfy

(q's 2w |U]|q; 23 w) (Others not modified|
= [51/,w+1U+(q',w; | q, wy) + Opr z—1U™ (ql7w;: | vaz)]

where U*(¢',0" | q,0) is a {0, 1}-valued function:

1
Ui(q/; 0/ | q; U) = 5q’,A(q,a) . 50/,B(q,a) : 5[1 + C(qvw)]
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Quantum Turing machine

Question: U unitary fora TM M?

For any pure quantum state |g; 2; w), U need to satisfy

(¢'s 2" w'|U|q; 2;w)
= [00r 01U (¢, W}, | @ W) + 62 01U (¢ w0y, | vaw)]Hgﬁéz Ouwy w,

where U*(q', 0" | ¢,0) is a {0, 1}'Va\'Cha'nrge in head pos.|

1
Ui(ql; 0/ | q; U) :’5q’,A(q,a)Héa/,B(q,a)" 5[1 + C(qvw)]

0 \ -
(Chance in symboll
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Quantum Turing machine

Question: U unitary fora TM M?

1
Ui(ql; U/ | q; U) = i(sq’,A(q,o’)(scf’,B(q,a) [1 + C(Q7 w)]a

Since every TM M has an equiv. reversible (deterministic)

TM ME = (QF, ERi% 1) we design a QTM Q from MF to recognize L(M).
U becomes unitary by setting A, B and C to satisfy
E"(q,0,A(q,0),B(q,0),C(q,0)) = 1.

L TMCQTM

Since a TM can simulate a QTM, TM and QTM has the same power.

H. Cheon (Yonsei Univ.) Computability of Quantum Devices 22/42



Quantum Turing machine

U construction

Let n(g; z;w) : C — N be a fixed numbering on the configurations. Then, for two
configurations ¢1 and ¢z, Up(cy),n(er) = 1 iff c1 Faq ca.
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Quantum Turing machine

QTM and quantum circuits

Remark
For a language L, the followings are equivalent:
1. There exists a poly-time QTM Q for L.
2. There exists a uniform family of quantum circuits {Q,}, and a poly-time

DTM M such that (Q,) = M(1") and Q|| ({w)) = 1(w € L). @, may
have poly(n) ancilla qubits initialized to |0).
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Computation complexity

Overview

Computation complexity
BQP
Arthur-Merlin
Complete problems
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Computation complexity

Complexity hierarchy

Overview

PSPACE

PH

e |
AN — ™~

NP

\P/

C[k]: k machine activations; QIP has a slightly different definition: k& messages passing.
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PSPACE

S

PH PP_rap

e |
AN — ™~

BQP
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Computation complexity

Complexity hierarchy

Overview

PSPACE-=irjpolyl=iP=aiP=qiP[3]

S

PH PP_rap

e |

AMEf amp1=1pp2) QMA=airy

~N T ™~

MAf vz BQP=air

\

NP-mapj BPP-ipij=ampy

p—

C[k]: k machine activations; QIP has a slightly different definition: k& messages passing.
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Computation complexity BQP

Bounded quantum polynomial

BQP: The class BQP contains a language L which has a polynomial QTM Q
with error bounded by 0 < ¢ < 0.5.

Formally, 3Q3cVw [c € [0,0.5) APr[Q((w)) # 1(w € L)] < ¢].
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Computation complexity BQP

Bounded quantum polynomial

BQP: The class BQP contains a language L which has a polynomial QTM Q
with error bounded by ¢ = 1/3.

Formally, 3Qvw [Pr[Q((w)) # 1(w € L)] < 1].
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Computation complexity BQP

Implication of BQP

and other error-bounded complexities

Let O be an oracle for a BQP language L; we can effectively decide w € L by
querying O repeatedly.
1: given: input w and iteration count ¢
for j € [1,i] do
collect O(w)
end for
return majority
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Computation complexity BQP

Implication of BQP

and other error-bounded complexities

Let O be an oracle for a BQP language L; we can effectively decide w € L by
querying O repeatedly.

i=1 1] T F

P>N|>2/3 >1/3
P<N|<1/3 <2/3
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Computation complexity BQP

Implication of BQP

and other error-bounded complexities

Let O be an oracle for a BQP language L; we can effectively decide w € L by
querying O repeatedly.

i=nt | T F
P>N|>1-9§ <d
P<N <6 >1

In > —48logé
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Computation complexity  Arthur-Merlin

Interactive proof system

An open problem

P # PSPACE
Author >
Reviewer >
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Interactive proof system

An open problem
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Computation complexity  Arthur-Merlin

Interactive proof system

An open problem

P # PSPACE
Author >
Pf. Review Rsp.
Reviewer >
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Computation complexity  Arthur-Merlin

Interactive proof system

Assume a statement is given and there are two people to prove this statement:

prover (P) and verifier (V).
» P tries to convince V that the given statement is true.
» V checks P’s proof with randomness.

The system accept/reject the statement by passing messages between the two.

It is important that P is unreliable; He may give a false proof.

AT
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Computation complexity  Arthur-Merlin

Interactive proof system
P # NP, wel ¢ satisfiable, etc.]

Assume a lgxéiven and there are two people to prove this statement:
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Computation complexity  Arthur-Merlin

Arthur-Merlin Framework

Arthur-Merlin framework [Bab85] is another name of the interactive proof system,
due to [GS86], where we have two machines: Merlin (P) and Arthur (V) with the
random coin tosses of Arthur must be revealed.

A language L is in the class Merlin-Arthur (MA) if, there exists a poly-time
probabilistic machine (Arthur, V) such that,

» Vx € L, there exists a proof that makes V' accept the statement with prob.
at least 2/3.

> Vx ¢ L, for any proof, V accepts the statement with prob. at most 1/3.
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Computation complexity ~ Arthur-Merlin

QMA

The QMA class is similar to MA; but here, Arthur is a quantum device without
randomness, and the proof is a quantum state (superposition) encoded in a
poly-number of qubits.

Formally,

QMA: A language L is in class QMA if there exists a poly-time quantum verifier
V such that

> Vo e L 30) PrlV(je), 1) = 1] = 2/3,
> Vo ¢ L V[y) PriV(lz), |[4)) =1] <1/3,
where |1) is encoded in poly(|z|) qubits.

Note that V is a BQP machine.
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Computation complexity  Arthur-Merlin

Analogy

BQP and QMA has similar relation to P and NP.
» Any language L in NP has a poly-time verifier V' checking certificate.

» Any language L in QMA has a BQP verifier V' checking certificate with high
prob..
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Computation complexity Complete problems

Recap: reduction
Oracle TM

Oracle TM: A TM M with oracle O is a TM together with
» a dedicated tape for the oracle O,
» two dedicated states Ogpary and Oepg.

The oracle O will read an input and write the output using the dedicated tape; in
the view of TM M, this takes a single computation step.
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Computation complexity Complete problems

Recap: reduction

Turing reduction

Turing reduction: For two languages A and B, A Turing reduction from A to B
isa TM M with B oracle that decides w € A. If there exists a Turing reduction,
A is B-computable.

Then, we can recognize A using any machine recognizing B.

Remark
If Turing reduction (from A to B) runs in polynomial time, it is Cook reduction.
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Computation complexity Complete problems

BQP-complete

BQP-hard: A language L is BQP-hard if every BQP language L’ has a
BPP (bounded probabilistic polynomial) TM with an oracle for L. (Assuming that
BPP # BQP.)

Remark
There are no known BQP-complete problems yet.
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Computation complexity Complete problems

Promise problem

Promise problem: A promise problem P : ¥* — {0, 1} has two disjoint
languages L1, Ly € ¥, where

» P(w) =1 when w € Ly and
» P(w) =0 when w € L.

The language L = Ly U Ly is the promise of P.
Note that, for w ¢ L, P(w) has no requirements.

Remark
A decision problem L is equivalent to a promise problem (L,¥* \ L).
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Computation complexity Complete problems

Promise problem

Example: Deutsch-Jozsa

Deutsch-Jozsa: For given an oracle for a constant or balanced function
function f:{0,1}"™ — {0, 1}, determine if f is constant.
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Computation complexity Complete problems

Promise problem

Example: Deutsch-Jozsa

Promise (L1 U Lo))

Deutsch-Jozsa: For given an oracle for aconstant or balanced function]

function f : {0,1}" — {0,1}, determine if[f is constant]

H. Cheon (Yonsei Univ.) Computability of Quantum Devices

38/42



Computation complexity Complete problems

BQP-complete

Problem (Canonical PromiseBQP problem[Zha12])

Given a family {Q, }, of poly-size uniform quantum circuits associated with two
disjoint languages L1 and Lg, and an input x € Ly U Ly with the promise that

Q|z|(z) gives
> 1 with prob. at least 2/3 for all x € L4,
> 1 with prob. at most 1/3 for all x € Ly,

determine that which case holds, i.e., determine that the probability of
Q|z)(x) = 1 is either above 2/3, or below 1/3.
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Computation complexity Complete problems

BQP-complete

Problem (Canonical PromiseBQP problem[Zha12])

Given a family {Q, }, of poly-size uniform quantum circuits associated with two

di“h decision versiorn, thelrermay be a circuit that does not ;5a;tislfy this cc.)ndilcion.\
Q[(T] gives
> 1 with prob. at least 2/3 for all x € L4,

> 1 with prob. at most 1/3 for all x € Ly,

determine that which case holds, i.e., determine that the probability of
Q|2 (x) = 1 is either above 2/3, or below 1/3.
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Computation complexity Complete problems

BQP-complete

Reduction

Assume: an oracle O for the canonical problem.
For a PromiseBQP problem (L1, Lg), 3DTM M that generates a family
{Qn = M(1™)},, of quantum circuits.

Then, we can solve (L1, L) by the following algorithm.

1. Query O with input (M, z).
2. Return [Prob. is at least 2/3] iff O gives an output 1.

This is a (det. linear time, with the oracle O) reduction to the canonical problem.
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Computation complexity Complete problems

BQP-complete

Reduction

Assume: an oracle O for the canonical problem.
For a PromiseBQP problem (L1, Lg), 3DTM M that generates a family
{Qn = M(1™)},, of quantum circuits.

Then, we can solve (L1, Lo) by [} fixed: Véopy I to oracle tape.|

1. Query O with input "/,,,,,

2. Return [Prob. is at least 2/3] iff O gives an output 1.

This is a (det. linear time, with the oracle O) reduction to the canonical problem.
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Computation complexity Complete problems

QMA-complete

Problem (QCSAT)

(A quantum variant of classical circuit SAT problem) Given a quantum circuit Q,
with n input qubits and m ancilla qubits with the promise that Q) is either

> 3|¢) such that Q(|1))) accepts with prob. at least 2/3 or
> V|Y), Q(|1)) accepts with prob. at most 1/3,
determine that which case holds.

Reduction is similar to that for the canonical BQP problem.
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Computation complexity Complete problems

Complete problems

Other complete problems

From [Zhal2] (BQP-c) and [Bool3] (QMA-c) (This has several others),
BQP-complete:

» A sampling variant of k-local Hamiltonian: approximate distribution of
k-local Hamiltonian's eigenvalues.

QMA-complete:

» Quantum circuit equivalence: Deciding whether two quantum circuits are
equivalent

» k-local Hamiltonian: Find the smallest eigenvalue of k-local Hamiltonian.
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