Computability of Quantum Devices

Hyunjoon Cheon

Yonsei University

Nov. 1, 2023

Overview

Overview

Computability

Quantum Turing machine

Computation complexity

Overview

Computability

Quantum Turing machine

Computation complexity

Problem

Is a given function $f : \mathbb{N} \to \mathbb{N}$ computable?

Example

PRIMES : $\mathbb{N} \to \{0, 1\}$ is computable.

Example

Let the 'busy beaver' $BB : n \mapsto BB(n)$ be the maximum number of nonzero output symbols of *n*-state Turing machine over a binary alphabet. Then, BB is incomputable [Rad62].

n	1	2	3	4	5
BB(n)	1	4	6	13	≥ 4098

Table: First five values of the busy beaver

Turing machine

Let $\Sigma = \{0, 1\}$ denote a binary alphabet throughout this talk. **Turing machine (TM)**: A (deterministic) Turing machine $\mathcal{M} = (Q, E, i, f)$ consists of:

- A finite set Q of states,
- ▶ A transition function $E \subseteq Q \times \Sigma \times Q \times \Sigma \times \{-1,1\} \rightarrow \{0,1\}$ of transitions that satisfies a condition: $\forall (q,\sigma), \sum_{(q',\sigma',d)} E(q,\sigma,q',\sigma',d) \leq 1$.

▶ An initial state $i \in Q$ and a final, accepting state $f \in Q$,

Configuration of TM

Configuration: A *configuration* of TM $\mathcal{M} = (Q, E, i, f)$ is an element of set $\mathcal{C} = Q \times \mathbb{Z} \times \Sigma^{\mathbb{Z}}$ that describes the current circumstance of \mathcal{M} .

Figure: Illustration of a Turing machine, the red cell denotes the initial head position, i.e. the beginning of input.

Semantics of TM

Derivation: If two configurations $c_1 = (q, x, w)$ and $c_2 = (q', x', w')$ satisfy:

•
$$E(q, w_x, q, w'_x, d) = 1$$
 (\mathcal{M} follows the transition),

• x + d = x' (Head moves) and

• $w_y = w'_y$ if $y \neq x$. (Not modifying other cells),

we say $c_1 \vdash_{\mathcal{M}} c_2$.

 $\vdash^*_{\mathcal{M}}$ is a transitive and reflexive closure of $\vdash_{\mathcal{M}}$.

Computation

Computation: a sequence of configurations. **Valid computation**: a computation $C = c_1 c_2 \dots$ satisfying $c_i \vdash_{\mathcal{M}} c_{i+1}$ for all *i*. **Accepting computation**: A valid computation $C = c_0 c_1 \dots c_n$ is accepting if $c_0 = (i, 0, w)$ and, the state of c_n is final and only the state is final.

Language of TM

Language: Given a TM $\mathcal{M} = (Q, E, i, f)$, its language $L(\mathcal{M})$ is

$$L(\mathcal{M}) = \{ w \in \Sigma^* \mid \exists acc. \text{ comp. of } c_0 = (i, 0, w) \text{ and } c_n = (f, 0, w') \},\$$

where $w' \in \Sigma^*$.

When we consider such \mathcal{M} as a function, we say that $\mathcal{M}(w) = w'$.

Computability

Church-Turing Thesis

A function $f : \mathbb{N} \to \mathbb{N}$ can be *effectively* computable if and only if it is computable by a Turing machine.

Here, *effectively* means that the computation of f is deterministic and it eventually terminates, giving an output.

Complexity

Complexity class: a set of languages (a.k.a. functions) satisfying *specific* properties.

- ► ALL: *all* languages.
- ▶ RE: languages *recognizable* by a Turing machine.
- R: languages *decidable* by a Turing machine.
- ▶ P: languages decidable by a *polynomial-time* Turing machine.

Overview of complexity hierarchy

▶ BB is in ALL \setminus RE.

- ▶ HALT and PCP are in $RE \setminus R$.
- ▶ PRIMES is in P [AKS04].

(Dashed lines denote proper inclusions.)

Nondeterminism

Nondeterministic TM: A nondeterministic TM (NTM) $\mathcal{M} = (Q, E, i, f)$ is a DTM without the determinism condition on E.

To quantum era

- How we can inject the quantum concepts in TM?
- ▶ Will the model be more powerful (or less powerful) than classical TM?

Quantum Turing machine

Overview

Computability

Quantum Turing machine

Computation complexity

H. Cheon (Yonsei Univ.)

Computability of Quantum Devices

Quantum Turing machine

Quantum TM: A quantum TM (QTM) Q = (Q, U, i, f) has four components (c.f. TM $\mathcal{M} = (Q, E, i, f)$):

- A finite set Q of states.
- ► A complex-valued unitary matrix U.
- An initial state $i \in Q$.
- ▶ A final, accepting state $f \in Q$.

Configuration of QTM

Let \mathcal{H}_A be a Hilbert space containing A.

A configuration $(q, x, w) \in Q \times \mathbb{Z} \times \Sigma^{\mathbb{Z}}$ of Q is encoded into (infinite) qubits as $|q; x; w\rangle = |q\rangle \otimes |x\rangle \otimes |w\rangle \in \mathcal{H}_Q \oplus \mathcal{H}_{\mathbb{Z}} \oplus \mathcal{H}_{\Sigma^{\mathbb{Z}}}.$

Note that, even we describe a QTM configuration in infinite qubits, we only use a *finite* portion of them to compute *effectively*.

The unitary operation

Starting from an initial superposition $|\psi(0)\rangle$ at time 0, the unitary operator U maps its superposition $|\psi(T)\rangle$ at time T as (c.f., Schrödinger eq.):

$$|\psi(T)\rangle = U^T |\psi(0)\rangle,$$

where the initial superposition $|\psi(0)\rangle$ is

$$|\psi(0)\rangle \stackrel{\text{def.}}{=} \sum_{w} \lambda_w |q_0;0;w\rangle; \quad \sum_{w} \|\lambda_w\|^2 = 1$$

Quantum Turing machine

Checking the end of computation

We can use a special qubit denoting the end of computation to check whether the machine terminated or not.

Circuit diagram

For any pure quantum state $|q;x;w\rangle$, U need to satisfy

$$\begin{aligned} \langle q'; x'; w' | U | q; x; w \rangle \\ &= [\delta_{x', x+1} U^+(q', w'_x \mid q, w_x) + \delta_{x', x-1} U^-(q', w'_x \mid q, w_x)] \prod_{y \neq x} \delta_{w_y, w'_y} \end{aligned}$$

$$U^{\pm}(q';\sigma' \mid q;\sigma) = \delta_{q',A(q,\sigma)} \cdot \delta_{\sigma',B(q,\sigma)} \cdot \frac{1}{2} [1 \pm C(q,w)]$$

For any pure quantum state $|q;x;w\rangle$, U need to satisfy

$$U^{\pm}(q';\sigma' \mid q;\sigma) = \delta_{q',A(q,\sigma)} \cdot \delta_{\sigma',B(q,\sigma)} \cdot \frac{1}{2} [1 \pm C(q,w)]$$

For any pure quantum state $|q;x;w\rangle$, U need to satisfy

$$\begin{array}{c} \langle q'; x'; w' | U | q; x; w \rangle & +1 \text{ move} \\ &= \left[\delta_{x', x+1} U^+(q', w'_x \mid q, w_x) \right] + \left[\delta_{x', x-1} U^-(q', w'_x \mid q, w_x) \right] \prod_{y \neq x} \delta_{w_y, w'_y} \end{array}$$

$$U^{\pm}(q';\sigma' \mid q;\sigma) = \delta_{q',A(q,\sigma)} \cdot \delta_{\sigma',B(q,\sigma)} \cdot \frac{1}{2} [1 \pm C(q,w)]$$

For any pure quantum state $|q;x;w\rangle$, U need to satisfy

$$\begin{array}{l} \langle q'; x'; w' | U | q; x; w \rangle & \hline \text{Others not modified} \\ &= [\delta_{x',x+1} U^+(q', w'_x \mid q, w_x) + \delta_{x',x-1} U^-(q', w'_x \mid q, w_x)] \boxed{\prod_{y \neq x} \delta_{w_y, w'_y}} \end{array}$$

$$U^{\pm}(q';\sigma' \mid q;\sigma) = \delta_{q',A(q,\sigma)} \cdot \delta_{\sigma',B(q,\sigma)} \cdot \frac{1}{2} [1 \pm C(q,w)]$$

For any pure quantum state $|q;x;w\rangle$, U need to satisfy

$$\begin{aligned} \langle q'; x'; w' | U | q; x; w \rangle \\ &= [\delta_{x', x+1} U^+(q', w'_x \mid q, w_x) + \delta_{x', x-1} U^-(q', w'_x \mid q, w_x)] \prod_{y \neq x} \delta_{w_y, w'_y} \end{aligned}$$

$$U^{\pm}(q';\sigma' \mid q;\sigma) = \delta_{q',A(q,\sigma)} \cdot \delta_{\sigma',B(q,\sigma)} \cdot \frac{1}{2} [1 \pm C(q,w)]$$

For any pure quantum state $|q;x;w\rangle$, U need to satisfy

$$\begin{split} \langle q'; x'; w' | U | q; x; w \rangle \\ &= [\delta_{x',x+1} U^+(q', w'_x \mid q, w_x) + \delta_{x',x-1} U^-(q', w'_x \mid q, w_x)] \prod_{y \neq x} \delta_{w_y, w'_y} \\ \text{where } U^{\pm}(q', \sigma' \mid q, \sigma) \text{ is a } \{0, 1\} \text{-varChange in head pos.} \\ U^{\pm}(q'; \sigma' \mid q; \sigma) = \underbrace{\delta_{q',A(q,\sigma)}}_{\text{Change in states}} \cdot \underbrace{\delta_{\sigma',B(q,\sigma)}}_{\text{Chance in symbol}} \cdot \underbrace{\frac{1}{2} [1 \pm C(q, w)]}_{\text{Chance in symbol}} \end{split}$$

Quantum Turing machine

Question: U unitary for a TM \mathcal{M} ?

$$U^{\pm}(q';\sigma' \mid q;\sigma) = \frac{1}{2} \delta_{q',A(q,\sigma)} \delta_{\sigma',B(q,\sigma)} [1 \pm C(q,w)],$$

Since every TM \mathcal{M} has an equiv. *reversible* (deterministic) TM $\mathcal{M}^R = (Q^R, E^R, i^R, f^R)$, we design a QTM \mathcal{Q} from \mathcal{M}^R to recognize $L(\mathcal{M})$. U becomes unitary by setting A, B and C to satisfy $E^R(q, \sigma, A(q, \sigma), B(q, \sigma), C(q, \sigma)) = 1$.

 $\therefore \mathsf{TM} \subseteq \mathsf{QTM}$

Since a TM can simulate a QTM, TM and QTM has the same power.

\boldsymbol{U} construction

Let $n(q; x; w) : \mathcal{C} \to \mathbb{N}$ be a fixed numbering on the configurations. Then, for two configurations c_1 and c_2 , $U_{n(c_2),n(c_1)} = 1$ iff $c_1 \vdash_{\mathcal{M}} c_2$.

QTM and quantum circuits

Remark

For a language L, the followings are equivalent:

- 1. There exists a poly-time QTM \mathcal{Q} for L.
- 2. There exists a uniform family of quantum circuits $\{Q_n\}_n$ and a poly-time DTM \mathcal{M} such that $\langle Q_n \rangle = \mathcal{M}(1^n)$ and $Q_{|\langle w \rangle|}(\langle w \rangle) = 1 (w \in L)$. Q_n may have poly(n) ancilla qubits initialized to $|0\rangle$.

Computation complexity

Overview

Computability

Quantum Turing machine

Computation complexity BQP Arthur-Merlin Complete problems

Overview

C[k]: k machine activations; QIP has a slightly different definition: k messages passing.

Overview

C[k]: k machine activations; QIP has a slightly different definition: k messages passing.

Overview

C[k]: k machine activations; QIP has a slightly different definition: k messages passing.

Overview

C[k]: k machine activations; QIP has a slightly different definition: k messages passing.

Bounded quantum polynomial

BQP: The class BQP contains a language L which has a polynomial QTM Q with error bounded by $0 \le c < 0.5$. Formally, $\exists Q \exists c \forall w \ [c \in [0, 0.5) \land \Pr[Q(\langle w \rangle) \neq 1(w \in L)] \le c]$.

Bounded quantum polynomial

BQP: The class BQP contains a language L which has a polynomial QTM Q with error bounded by c = 1/3. Formally, $\exists Q \forall w \ [\Pr[Q(\langle w \rangle) \neq 1(w \in L)] \leq \frac{1}{3}].$

Implication of BQP

and other error-bounded complexities

Let O be an oracle for a BQP language L; we can effectively decide $w \in L$ by querying O repeatedly.

- 1: given: input \boldsymbol{w} and iteration count \boldsymbol{i}
- 2: for $j \in [1, i]$ do
- 3: collect O(w)
- 4: end for
- 5: return majority

Implication of BQP

and other error-bounded complexities

Let O be an oracle for a BQP language L; we can effectively decide $w \in L$ by querying O repeatedly.

-

Implication of BQP

and other error-bounded complexities

Let O be an oracle for a BQP language L; we can effectively decide $w \in L$ by querying O repeatedly.

$$\begin{array}{c|c|c} i=n^1 & \mathsf{T} & \mathsf{F} \\ \hline P>N & \geq 1-\delta & \leq \delta \\ P$$

 $^1n \geq -48\log \delta$

H. Cheon (Yonsei Univ.)

Computability of Quantum Devices

Arthur-Merlin

Interactive proof system

An open problem $P \neq PSPACE$

Author -

Reviewer

H. Cheon (Yonsei Univ.)

Computability of Quantum Devices

Assume a statement is given and there are two people to prove this statement: prover (P) and verifier (V).

- P tries to convince V that the given statement is true.
- V checks P's proof with randomness.

The system accept/reject the statement by passing messages between the two.

It is important that P is unreliable; He may give a false proof.

 $\mathsf{P} \neq \mathsf{NP}, w \in L, \phi$ satisfiable, etc.

Assume a statement is given and there are two people to prove this statement: prover (P) and verifier (V).

- ▶ P tries to convince V that the given statement is true.
- ► V checks P's proof with randomness.

The system accept/reject the statement by passing messages between the two.

It is important that P is unreliable; He may give a false proof.

Arthur-Merlin Framework

Arthur-Merlin framework [Bab85] is another name of the interactive proof system, due to [GS86], where we have two machines: Merlin (P) and Arthur (V) with the random coin tosses of Arthur must be revealed.

A language L is in the class Merlin-Arthur (MA) if, there exists a poly-time probabilistic machine (Arthur, V) such that,

- ▶ $\forall x \in L$, there exists a proof that makes V accept the statement with prob. at least 2/3.
- ▶ $\forall x \notin L$, for any proof, V accepts the statement with prob. at most 1/3.

QMA

The QMA class is similar to MA; but here, Arthur is a quantum device without randomness, and the proof is a quantum state (superposition) encoded in a poly-number of qubits.

Formally,

QMA: A language L is in class QMA if there exists a poly-time quantum verifier V such that

- $\blacktriangleright \ \forall x \in L, \ \exists |\psi\rangle \ \Pr[V(|x\rangle, |\psi\rangle) = 1] \geq 2/3,$
- $\blacktriangleright \ \forall x \notin L, \, \forall |\psi\rangle \ \Pr[V(|x\rangle, |\psi\rangle) = 1] \leq 1/3,$

where $|\psi\rangle$ is encoded in poly(|x|) qubits.

Note that V is a BQP machine.

Analogy

BQP and QMA has similar relation to P and NP.

- Any language L in NP has a poly-time verifier V checking certificate.
- Any language L in QMA has a BQP verifier V checking certificate with high prob..

Recap: reduction

Oracle TM: A TM M with oracle O is a TM together with

- ▶ a dedicated tape for the oracle *O*,
- two dedicated states O_{start} and O_{end} .

The oracle O will read an input and write the output using the dedicated tape; in the view of TM M, this takes a single computation step.

Recap: reduction

Turing reduction

Turing reduction: For two languages A and B, A Turing reduction from A to B is a TM M with B oracle that decides $w \in A$. If there exists a Turing reduction, A is B-computable.

Then, we can recognize A using any machine recognizing B.

Remark

If Turing reduction (from A to B) runs in polynomial time, it is Cook reduction.

BQP-hard: A language L is BQP-hard if every BQP language L' has a BPP (bounded probabilistic polynomial) TM with an oracle for L. (Assuming that BPP \neq BQP.)

Remark

There are no known BQP-complete problems yet.

Promise problem

Promise problem: A promise problem $P: \Sigma^* \to \{0, 1\}$ has two disjoint languages $L_1, L_0 \in \Sigma^*$, where

- ▶ P(w) = 1 when $w \in L_1$ and
- ▶ P(w) = 0 when $w \in L_0$.

The language $L = L_1 \cup L_0$ is the *promise* of *P*. Note that, for $w \notin L$, P(w) has no requirements.

Remark

A decision problem L is equivalent to a promise problem $(L, \Sigma^* \setminus L)$.

Example: Deutsch-Jozsa

Deutsch-Jozsa: For given an oracle for a constant or balanced function function $f: \{0,1\}^n \to \{0,1\}$, determine if f is constant.

Promise problem

Example: Deutsch-Jozsa

Problem (Canonical PromiseBQP problem[Zha12])

Given a family $\{Q_n\}_n$ of poly-size uniform quantum circuits associated with two disjoint languages L_1 and L_0 , and an input $x \in L_1 \cup L_0$ with the *promise* that $Q_{|x|}(x)$ gives

- ▶ 1 with prob. at least 2/3 for all $x \in L_1$,
- ▶ 1 with prob. at most 1/3 for all $x \in L_0$,

determine that which case holds, i.e., determine that the probability of $Q_{|x|}(x) = 1$ is either above 2/3, or below 1/3.

Problem (Canonical PromiseBQP problem[Zha12])

Given a family $\{Q_n\}_n$ of poly-size uniform quantum circuits associated with two difin decision version, there may be a circuit that does not satisfy this condition.] $Q_{|x|}(x)$ gives

- ▶ 1 with prob. at least 2/3 for all $x \in L_1$,
- ▶ 1 with prob. at most 1/3 for all $x \in L_0$,

determine that which case holds, i.e., determine that the probability of $Q_{|x|}(x) = 1$ is either above 2/3, or below 1/3.

Reduction

Assume: an oracle O for the canonical problem.

For a PromiseBQP problem (L_1, L_0) , \exists DTM M that generates a family $\{Q_n = M(1^n)\}_n$ of quantum circuits.

Then, we can solve (L_1, L_0) by the following algorithm.

1. Query O with input $\langle M, x \rangle$.

2. Return [Prob. is at least 2/3] iff O gives an output 1.

This is a (det. linear time, with the oracle O) reduction to the canonical problem.

Reduction

Assume: an oracle O for the canonical problem.

For a PromiseBQP problem (L_1, L_0) , $\exists DTM \ M$ that generates a family $\{Q_n = M(1^n)\}_n$ of quantum circuits.

Then, we can solve (L_1, L_0) by M fixed; copy x to oracle tape.

- 1. Query O with input $\langle M, x \rangle$
- 2. Return [Prob. is at least 2/3] iff O gives an output 1.

This is a (det. linear time, with the oracle O) reduction to the canonical problem.

QMA-complete

Problem (QCSAT)

(A quantum variant of classical circuit SAT problem) Given a quantum circuit Q, with n input qubits and m ancilla qubits with the *promise* that Q is either

- $\blacktriangleright \; \exists |\psi\rangle$ such that $Q(|\psi\rangle)$ accepts with prob. at least 2/3 or
- $\blacktriangleright~\forall |\psi\rangle,~Q(|\psi\rangle)$ accepts with prob. at most 1/3,

determine that which case holds.

Reduction is similar to that for the canonical BQP problem.

Complete problems

Other complete problems

From [Zha12] (BQP-c) and [Boo13] (QMA-c) (This has several others), **BQP-complete**:

A sampling variant of k-local Hamiltonian: approximate distribution of k-local Hamiltonian's eigenvalues.

QMA-complete:

- Quantum circuit equivalence: Deciding whether two quantum circuits are equivalent
- ▶ *k*-local Hamiltonian: Find the smallest eigenvalue of *k*-local Hamiltonian.