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Computability

Computability

Problem
Is a given function f : N → N computable?

Example
PRIMES : N → {0, 1} is computable.

Example
Let the ‘busy beaver’ BB : n 7→ BB(n) be the maximum number of nonzero
output symbols of n-state Turing machine over a binary alphabet. Then, BB is
incomputable [Rad62].

n 1 2 3 4 5
BB(n) 1 4 6 13 ≥ 4098

Table: First five values of the busy beaver

H. Cheon (Yonsei Univ.) Computability of Quantum Devices 4 / 42



Computability

Turing machine

Let Σ = {0, 1} denote a binary alphabet throughout this talk.
Turing machine (TM): A (determinstic) Turing machine M = (Q,E, i, f)
consists of:

▶ A finite set Q of states,

▶ A transition function E ⊆ Q× Σ×Q× Σ× {−1, 1} → {0, 1} of transitions
that satisfies a condition: ∀(q, σ),

∑
(q′,σ′,d)E(q, σ, q′, σ′, d) ≤ 1.

▶ An initial state i ∈ Q and a final, accepting state f ∈ Q,
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Computability

Configuration of TM

Configuration: A configuration of TM M = (Q,E, i, f) is an element of
set C = Q× Z× ΣZ that describes the current circumstance of M.

q

0 0 0 1 0 01· · · · · ·

Configuration: (q, 1, 110)

Figure: Illustration of a Turing machine, the red cell denotes the initial head position, i.e.
the beginning of input.
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Computability

Semantics of TM

Derivation: If two configurations c1 = (q, x, w) and c2 = (q′, x′, w′) satisfy:

▶ E(q, wx, q, w
′
x, d) = 1 (M follows the transition),

▶ x+ d = x′ (Head moves) and

▶ wy = w′
y if y ̸= x. (Not modifying other cells),

we say c1 ⊢M c2.
⊢∗
M is a transitive and reflexive closure of ⊢M.
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Computability

Computation

Computation: a sequence of configurations.
Valid computation: a computation C = c1c2 . . . satisfying ci ⊢M ci+1 for all i.
Accepting computation: A valid computation C = c0c1 . . . cn is accepting if
c0 = (i, 0, w) and, the state of cn is final and only the state is final.
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Computability

Language of TM

Language: Given a TM M = (Q,E, i, f), its language L(M) is

L(M) = {w ∈ Σ∗ | ∃acc. comp. of c0 = (i, 0, w) and cn = (f, 0, w′)},

where w′ ∈ Σ∗.

When we consider such M as a function, we say that M(w) = w′.
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Computability

Computability

Church-Turing Thesis
A function f : N → N can be effectively computable if and only if it is computable
by a Turing machine.

Here, effectively means that the computation of f is deterministic and it
eventually terminates, giving an output.
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Computability

Complexity

Complexity class: a set of languages (a.k.a. functions) satisfying specific
properties.

▶ ALL: all languages.

▶ RE: languages recognizable by a Turing machine.

▶ R: languages decidable by a Turing machine.

▶ P: languages decidable by a polynomial-time Turing machine.
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Computability

Overview of complexity hierarchy

ALL = 2Σ
∗

Recursively Enumerable

Recursive = Decidable

PSPACE

P

(Dashed lines denote proper inclusions.)

▶ BB is in ALL \ RE.
▶ HALT and PCP are in RE \ R.
▶ PRIMES is in P [AKS04].
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Computability

Nondeterminism

Nondeterministic TM: A nondeterministic TM (NTM) M = (Q,E, i, f) is a
DTM without the determinism condition on E.

R=DTM=NTM

PSPACE=NPSPACE

NP

P
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Computability

To quantum era

▶ How we can inject the quantum concepts in TM?

▶ Will the model be more powerful (or less powerful) than classical TM?
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Quantum Turing machine

Quantum Turing machine

Quantum TM: A quantum TM (QTM) Q = (Q,U, i, f) has four
components (c.f. TM M = (Q,E, i, f)):

▶ A finite set Q of states.

▶ A complex-valued unitary matrix U .

▶ An initial state i ∈ Q.

▶ A final, accepting state f ∈ Q.
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Quantum Turing machine

Configuration of QTM

Let HA be a Hilbert space containing A.

A configuration (q, x, w) ∈ Q× Z× ΣZ of Q is encoded into (infinite) qubits as
|q;x;w⟩ = |q⟩ ⊗ |x⟩ ⊗ |w⟩ ∈ HQ ⊕HZ ⊕HΣZ .

Note that, even we describe a QTM configuration in infinite qubits, we only use a
finite portion of them to compute effectively.
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Quantum Turing machine

The unitary operation

Starting from an initial superposition |ψ(0)⟩ at time 0, the unitary operator U
maps its superposition |ψ(T )⟩ at time T as (c.f., Schrödinger eq.):

|ψ(T )⟩ = UT |ψ(0)⟩,

where the initial superposition |ψ(0)⟩ is

|ψ(0)⟩ def.
=

∑
w

λw|q0; 0;w⟩;
∑
w

∥λw∥2 = 1
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Quantum Turing machine

Checking the end of computation

We can use a special qubit denoting the end of computation to check whether the
machine terminated or not.

H. Cheon (Yonsei Univ.) Computability of Quantum Devices 19 / 42



Quantum Turing machine

Circuit diagram

· · ·

end-of-comp.

Q

Z

ΣZ

U U U
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Quantum Turing machine

Question: U unitary for a TM M?

For any pure quantum state |q;x;w⟩, U need to satisfy

⟨q′;x′;w′|U |q;x;w⟩
= [δx′,x+1U

+(q′, w′
x | q, wx) + δx′,x−1U

−(q′, w′
x | q, wx)]

∏
y ̸=x δwy,w′

y

where U±(q′, σ′ | q, σ) is a {0, 1}-valued function:

U±(q′;σ′ | q;σ) = δq′,A(q,σ) · δσ′,B(q,σ) ·
1

2
[1± C(q, w)]
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Quantum Turing machine

Question: U unitary for a TM M?
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∏
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Quantum Turing machine

Question: U unitary for a TM M?

For any pure quantum state |q;x;w⟩, U need to satisfy

⟨q′;x′;w′|U |q;x;w⟩
= [δx′,x+1U

+(q′, w′
x | q, wx) + δx′,x−1U

−(q′, w′
x | q, wx)]

∏
y ̸=x δwy,w′

y

where U±(q′, σ′ | q, σ) is a {0, 1}-valued function:

U±(q′;σ′ | q;σ) =

Change in states

δq′,A(q,σ) ·

Chance in symbol

δσ′,B(q,σ) ·

Change in head pos.

1

2
[1± C(q, w)]
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Quantum Turing machine

Question: U unitary for a TM M?

U±(q′;σ′ | q;σ) = 1

2
δq′,A(q,σ)δσ′,B(q,σ)[1± C(q, w)],

Since every TM M has an equiv. reversible (deterministic)
TM MR = (QR, ER, iR, fR), we design a QTM Q from MR to recognize L(M).
U becomes unitary by setting A, B and C to satisfy
ER(q, σ,A(q, σ), B(q, σ), C(q, σ)) = 1.

∴ TM ⊆ QTM

Since a TM can simulate a QTM, TM and QTM has the same power.
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Quantum Turing machine

U construction

Let n(q;x;w) : C → N be a fixed numbering on the configurations. Then, for two
configurations c1 and c2, Un(c2),n(c1) = 1 iff c1 ⊢M c2.
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Quantum Turing machine

QTM and quantum circuits

Remark
For a language L, the followings are equivalent:

1. There exists a poly-time QTM Q for L.

2. There exists a uniform family of quantum circuits {Qn}n and a poly-time
DTM M such that ⟨Qn⟩ = M(1n) and Q|⟨w⟩|(⟨w⟩) = 1(w ∈ L). Qn may
have poly(n) ancilla qubits initialized to |0⟩.
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Computation complexity

Complexity hierarchy
Overview

P

NP=MA[1]

PH

PSPACE=IP[poly]=IP=QIP=QIP[3]

BPP=IP[1]=AM[1]

PP=PQP

BQP=QIP[0]

AMdef.
= AM[2]=IP[2]

MAdef.
= MA[2]

QMA=QIP[1]

C[k]: k machine activations; QIP has a slightly different definition: k messages passing.
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Computation complexity BQP

Bounded quantum polynomial

BQP: The class BQP contains a language L which has a polynomial QTM Q
with error bounded by 0 ≤ c < 0.5.
Formally, ∃Q∃c∀w [c ∈ [0, 0.5) ∧ Pr[Q(⟨w⟩) ̸= 1(w ∈ L)] ≤ c].
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Computation complexity BQP

Bounded quantum polynomial

BQP: The class BQP contains a language L which has a polynomial QTM Q
with error bounded by c = 1/3.
Formally, ∃Q∀w

[
Pr[Q(⟨w⟩) ̸= 1(w ∈ L)] ≤ 1

3

]
.
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Computation complexity BQP

Implication of BQP
and other error-bounded complexities

Let O be an oracle for a BQP language L; we can effectively decide w ∈ L by
querying O repeatedly.

1: given: input w and iteration count i
2: for j ∈ [1, i] do
3: collect O(w)
4: end for
5: return majority
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Computation complexity BQP

Implication of BQP
and other error-bounded complexities

Let O be an oracle for a BQP language L; we can effectively decide w ∈ L by
querying O repeatedly.

i = 1 T F
P > N ≥ 2/3 ≥ 1/3
P < N ≤ 1/3 ≤ 2/3
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Computation complexity BQP

Implication of BQP
and other error-bounded complexities

Let O be an oracle for a BQP language L; we can effectively decide w ∈ L by
querying O repeatedly.

i = n1 T F
P > N ≥ 1− δ ≤ δ
P < N ≤ δ ≥ 1− δ

1n ≥ −48 log δ
H. Cheon (Yonsei Univ.) Computability of Quantum Devices 28 / 42



Computation complexity Arthur-Merlin

Interactive proof system

An open problem
P ̸= PSPACE

Author

Reviewer
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Computation complexity Arthur-Merlin

Interactive proof system

An open problem
P ̸= PSPACE

Author

Reviewer

Pf. Review Rsp.

Acc./Rej.

H. Cheon (Yonsei Univ.) Computability of Quantum Devices 29 / 42



Computation complexity Arthur-Merlin

Interactive proof system

Assume a statement is given and there are two people to prove this statement:
prover (P) and verifier (V).

▶ P tries to convince V that the given statement is true.

▶ V checks P’s proof with randomness.

The system accept/reject the statement by passing messages between the two.

It is important that P is unreliable; He may give a false proof.

P

V

Pf. Rsp.
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Computation complexity Arthur-Merlin

Interactive proof system

Assume a

P ̸= NP, w ∈ L, ϕ satisfiable, etc.

statement is given and there are two people to prove this statement:
prover (P) and verifier (V).

▶ P tries to convince V that the given statement is true.

▶ V checks P’s proof with randomness.

The system accept/reject the statement by passing messages between the two.

It is important that P is unreliable; He may give a false proof.

P

V

Pf. Rsp.
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Computation complexity Arthur-Merlin

Arthur-Merlin Framework

Arthur-Merlin framework [Bab85] is another name of the interactive proof system,
due to [GS86], where we have two machines: Merlin (P) and Arthur (V) with the
random coin tosses of Arthur must be revealed.

A language L is in the class Merlin-Arthur (MA) if, there exists a poly-time
probabilistic machine (Arthur, V) such that,

▶ ∀x ∈ L, there exists a proof that makes V accept the statement with prob.
at least 2/3.

▶ ∀x /∈ L, for any proof, V accepts the statement with prob. at most 1/3.
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Computation complexity Arthur-Merlin

QMA

The QMA class is similar to MA; but here, Arthur is a quantum device without
randomness, and the proof is a quantum state (superposition) encoded in a
poly-number of qubits.

Formally,
QMA: A language L is in class QMA if there exists a poly-time quantum verifier
V such that

▶ ∀x ∈ L, ∃|ψ⟩ Pr[V (|x⟩, |ψ⟩) = 1] ≥ 2/3,

▶ ∀x /∈ L, ∀|ψ⟩ Pr[V (|x⟩, |ψ⟩) = 1] ≤ 1/3,

where |ψ⟩ is encoded in poly(|x|) qubits.

Note that V is a BQP machine.
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Computation complexity Arthur-Merlin

Analogy

BQP and QMA has similar relation to P and NP.

▶ Any language L in NP has a poly-time verifier V checking certificate.

▶ Any language L in QMA has a BQP verifier V checking certificate with high
prob..
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Computation complexity Complete problems

Recap: reduction
Oracle TM

Oracle TM: A TM M with oracle O is a TM together with

▶ a dedicated tape for the oracle O,

▶ two dedicated states Ostart and Oend.

The oracle O will read an input and write the output using the dedicated tape; in
the view of TM M , this takes a single computation step.
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Computation complexity Complete problems

Recap: reduction
Turing reduction

Turing reduction: For two languages A and B, A Turing reduction from A to B
is a TM M with B oracle that decides w ∈ A. If there exists a Turing reduction,
A is B-computable.
Then, we can recognize A using any machine recognizing B.

Remark
If Turing reduction (from A to B) runs in polynomial time, it is Cook reduction.
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Computation complexity Complete problems

BQP-complete

BQP-hard: A language L is BQP-hard if every BQP language L′ has a
BPP (bounded probabilistic polynomial) TM with an oracle for L. (Assuming that
BPP ̸= BQP.)

Remark
There are no known BQP-complete problems yet.
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Computation complexity Complete problems

Promise problem

Promise problem: A promise problem P : Σ∗ → {0, 1} has two disjoint
languages L1, L0 ∈ Σ∗, where

▶ P (w) = 1 when w ∈ L1 and

▶ P (w) = 0 when w ∈ L0.

The language L = L1 ∪ L0 is the promise of P .
Note that, for w /∈ L, P (w) has no requirements.

Remark
A decision problem L is equivalent to a promise problem (L,Σ∗ \ L).
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Computation complexity Complete problems

Promise problem
Example: Deutsch-Jozsa

Deutsch-Jozsa: For given an oracle for a constant or balanced function
function f : {0, 1}n → {0, 1}, determine if f is constant.

H. Cheon (Yonsei Univ.) Computability of Quantum Devices 38 / 42



Computation complexity Complete problems

Promise problem
Example: Deutsch-Jozsa

Deutsch-Jozsa: For given an oracle for a

Promise (L1 ∪ L0)

constant or balanced function
function f : {0, 1}n → {0, 1}, determine if

L1

f is constant.
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Computation complexity Complete problems

BQP-complete

Problem (Canonical PromiseBQP problem[Zha12])
Given a family {Qn}n of poly-size uniform quantum circuits associated with two
disjoint languages L1 and L0, and an input x ∈ L1 ∪ L0 with the promise that
Q|x|(x) gives

▶ 1 with prob. at least 2/3 for all x ∈ L1,

▶ 1 with prob. at most 1/3 for all x ∈ L0,

determine that which case holds, i.e., determine that the probability of
Q|x|(x) = 1 is either above 2/3, or below 1/3.
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Computation complexity Complete problems
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Given a family {Qn}n of poly-size uniform quantum circuits associated with two
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▶ 1 with prob. at least 2/3 for all x ∈ L1,

▶ 1 with prob. at most 1/3 for all x ∈ L0,

determine that which case holds, i.e., determine that the probability of
Q|x|(x) = 1 is either above 2/3, or below 1/3.

H. Cheon (Yonsei Univ.) Computability of Quantum Devices 39 / 42



Computation complexity Complete problems

BQP-complete
Reduction

Assume: an oracle O for the canonical problem.
For a PromiseBQP problem (L1, L0), ∃DTM M that generates a family
{Qn =M(1n)}n of quantum circuits.

Then, we can solve (L1, L0) by the following algorithm.

1. Query O with input ⟨M,x⟩.
2. Return [Prob. is at least 2/3] iff O gives an output 1.

This is a (det. linear time, with the oracle O) reduction to the canonical problem.
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BQP-complete
Reduction

Assume: an oracle O for the canonical problem.
For a PromiseBQP problem (L1, L0), ∃DTM M that generates a family
{Qn =M(1n)}n of quantum circuits.

Then, we can solve (L1, L0) by the following algorithm.

1. Query O with input

M fixed; copy x to oracle tape.

⟨M,x⟩.
2. Return [Prob. is at least 2/3] iff O gives an output 1.

This is a (det. linear time, with the oracle O) reduction to the canonical problem.
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Computation complexity Complete problems

QMA-complete

Problem (QCSAT)
(A quantum variant of classical circuit SAT problem) Given a quantum circuit Q,
with n input qubits and m ancilla qubits with the promise that Q is either

▶ ∃|ψ⟩ such that Q(|ψ⟩) accepts with prob. at least 2/3 or

▶ ∀|ψ⟩, Q(|ψ⟩) accepts with prob. at most 1/3,

determine that which case holds.

Reduction is similar to that for the canonical BQP problem.
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Computation complexity Complete problems

Complete problems
Other complete problems

From [Zha12] (BQP-c) and [Boo13] (QMA-c) (This has several others),
BQP-complete:

▶ A sampling variant of k-local Hamiltonian: approximate distribution of
k-local Hamiltonian’s eigenvalues.

QMA-complete:

▶ Quantum circuit equivalence: Deciding whether two quantum circuits are
equivalent

▶ k-local Hamiltonian: Find the smallest eigenvalue of k-local Hamiltonian.
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