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Problem Motivation

• Given an infinite seq of coin tosses (HTHTT…) such that each 
toss is independent event, investigate ability of a finite 
automaton to distinguish fair coin, or biased (𝑝 =

1

2
± 𝜖) coin.



Problem specification

1. Type of (Finite) automaton: Classical or quantum

2. Is 𝜖 known? (If Coin is biased, then it is biased by known 𝜖)
3. How does the automaton ‘outputs’ fair or biased?



Problem specification

3. How does the automaton ‘outputs’ fair or biased?

3-1. Automaton runs forever to output fair, halts to output biased.
-One sided halting
3-2. Every state of (finite) automaton is labelled fair or biased. 
Consider time-average of automaton spending in biased states vs fair 
states. Limit the time to infinity, and if automatons spends greater or 
equal time in fair states on average than 

2

3
, automaton output fair. 

-Limiting acceptance



Example

• [Hellman and Cover]

If 𝜖 is known, classical finite automaton can detect biased coin 
by limiting acceptance with Ω(1/𝜖) states.
• [Aaronson and Drucker]

(i) If 𝜖 is known, a quantum automaton with 2 states can solve 
the problem by limiting acceptance.

(ii) If 𝜖 is unknown, exists no finite quantum automaton with 
fixed #states that solves the problem by one sided halting.



Problem specification

1. Type of (Finite) automaton: Classical or quantum

2. Is 𝜖 known? (If Coin is biased, then it is biased by known 𝜖)
3. How does the automaton ‘outputs’ fair or biased?

For 48 different versions Aaronson considered, the only 
unsolved version is as follows:



Goal

There is no quantum finite automaton that has the following 
property simultaneously for every 𝜖 ∈ [−

1

2
,
1

2
]\ {0}: 

Given access to an infinite sequence of coin tosses, if the coin is 
( 1/2 + 𝜖)-biased then the automaton spends at least 2/3 of its 
time guessing “biased”, and if the coin is fair then the 
automaton spends at least 2/3 of its time guessing “fair”.



Mixed State

• Assume two boxes

A
Outputs |1⟩ with prob ½
Outputs |0⟩ with prob ½

B
Outputs −

3

2
0 +

1

2
1 with prob ½

Outputs 
1

2
0 +

3

2
1 with prob ½

Any way to differentiate two boxes?



Mixed State

• Usually used in two cases
1.when the preparation of the system is not fully known, and thus one 

must deal with a statistical ensemble of possible preparations
2.when one wants to describe a physical system which is entangled 

with another, without describing their combined state.

*Ensemble: Idealization consisting large number of virtual copies
*Like box of above example.(One can pick as many qubits as desired)



Mixed State
• Density operator is defined as follows:
If pure state |𝜓𝑖⟩ has probability 𝑝𝑖, for all 𝑖, then pure state 𝜌 ∈ ℬ(ℋ) is 
defined as follows to represent all indistinguishable mixed states:
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Mixed State

• Transition of quantum state

From 𝑈 𝜓 , to Φ(𝜌)

Φ:ℬ ℋ → ℬ ℋ (Superoperator)

From unitary condition( 𝑈∗ = 𝑈−1), quantum channel Φ should 
be completely positive and trace-preserving.

Equivalently,



Mixed State

• Transition of quantum state

Equivalently, exists (not necessarily unique) Kraus operators 
𝐾1, 𝐾2, … ,𝐾𝑟 with  σ𝑖=1

𝑟 𝐾𝑖
∗𝐾𝑖 = 𝐼 such that Φ 𝜌 = σ𝑖=1

𝑟 𝐾𝑖𝜌𝐾𝑖
∗

• Measurement of quantum state

For pure state |𝜓⟩, when measured with standard basis, 
probability getting result is absolute square value of indices of 
𝜓 . Analogous version for mixed state is as follows:



Mixed State

• Measurement of quantum state

Defn: POVM(positive operator-valued measure) is a set of 
Hermitian matrixes {𝐹𝑖} such that σ𝑖=1

𝑛 𝐹𝑖 = 𝐼.

𝑃𝑟𝑜𝑏 𝑖 = tr(𝜌𝐹𝑖) whereas 𝑃𝑟𝑜𝑏(𝑖) is probability of measuring 
value related with 𝑖.

We will denote 𝑃𝑟𝑜𝑏 𝑖 as 𝐹𝑖 , 𝜌 .



Properties of Quantum Channel

Cesàro Mean

Let 𝑎𝑛 be a sequence of complex numbers. Suppose that 𝑎𝑛
converges to 𝑙 in ℂ . Then 

lim
𝑛→∞

𝑎1 + 𝑎2 + …+ 𝑎𝑛
𝑛

= 𝑙



Properties of Quantum Channel

Cesàro Mean
Proof)For any fixed integer 𝑛0,

𝑎1 + 𝑎2 + …+ 𝑎𝑛
𝑛

− 𝑙 ≤
𝑎1 − 𝑙 +⋯+ 𝑎𝑛 − 𝑙

𝑛
≤ 𝑛0

sup
𝑘≤𝑛0

𝑎𝑘 − 𝑙

𝑛
+ sup

𝑛0<𝑘≤𝑛
|𝑎𝑘 − 𝑙|

Apply 𝑛 → ∞ to both sides. Then,

limsup
𝑛→∞

𝑎1 + 𝑎2 + …+ 𝑎𝑛
𝑛

− 𝑙 ≤ sup
𝑛0<𝑘

|𝑎𝑘 − 𝑙|

Now apply 𝑛0 → ∞. As 𝑎𝑘 converge to 𝑙,

limsup
𝑛→∞

𝑎1 + 𝑎2 + …+ 𝑎𝑛
𝑛

− 𝑙 = 0

Therefore, lim
𝑛→∞

𝑎1+𝑎2+ …+𝑎𝑛

𝑛
= 𝑙 = lim

𝑛→∞
𝑎𝑛 .



Properties of Quantum Channel

Cesàro Mean
Similar holds for Quantum channel. 

For any quantum channel Φ, let ෢Φ∞: = lim
𝑁→∞

1

𝑁
Σ𝑛=1
𝑁 Φ𝑛 and Φ∞: = lim

𝑛→∞
Φn. They both are 

itself existing quantum channel and they are same.



Mathematical background

Invariant subspace
Def: Invariant subspace of any linear operator 𝑇, denoted as 𝑉1(𝑇) , is eigenspace of 𝑇
with eigenvalue 1.

Why ‘invariant’? 𝑇(𝑥) = 𝑥 iff 𝑥 ∈ 𝑉1(𝑇). Applying 𝑇 cannot change 𝑥.

For any quantum channel Φ,Let  𝑦 = Φ∞(𝑥) for some density operator 𝑥. 

Φ 𝑦 = Φ Φ∞ 𝑥 = Φ∞ 𝑥 = 𝑦. Therefore, 𝑦 is density operator in 𝑉1(Φ).

(i.e. Φ∞ is projection onto some fixed points of 𝑉1(Φ).)



Mathematical background

Distance defined between (sub)spaces( Perturbation theory for 
linear operators, Tosio Kato, 4.2.1)
Let  𝒲 𝑋,𝑌 be set of all closed operators from 𝑋 to 𝑌. If 𝑇, 𝑆 ∈ 𝒲(𝑋, 𝑌),their 
graphs 𝐺(𝑇), 𝐺(𝑆) are closed linear manifolds in the product space 𝑋 × 𝑌. 

Thus the "distance" between T and S can be measured by the "gap" between the 
closed linear manifolds: 𝐺(𝑇), 𝐺 (𝑆). For two linear closed manifolds M and N, gap 
function is denoted  መ𝛿 and defined as follows:

𝛿 𝑀,𝑁 = sup
𝑢∈𝑆𝑀

𝑑𝑖𝑠𝑡 𝑢, 𝑁 (𝑥 ∈ 𝑆𝑀 𝑖𝑓𝑓 𝑥 ∈ 𝑀 𝑎𝑛𝑑 𝑥 = 1)

መ𝛿 𝑀,𝑁 = max[𝛿 𝑀,𝑁 , 𝛿 𝑁,𝑀 ]



Mathematical background

Invariant subspace
Perturbation theory studies effect of small change of linear operator.

Generally, slight modification of linear operator can change dimension of 
its invariant space.

Distance defined between (sub)spaces
(Perturbation theory for linear operators, Tosio Kato, 4.2.2)

Let 𝑀,𝑁 be a linear manifolds in a Banach space 𝑍. If dim𝑀 > dim𝑁 there exists 𝑢 ∈ 𝑀 such that:

𝑑𝑖𝑠𝑡 𝑢, 𝑁 = 𝑢 > 0



Mathematical background

Theorem: Given nullity of matrix 𝑨(𝒂) is constant(nonzero), its 
kernel is continuous. 
Pf) By rank- nullity thm, rank of A is also constant:𝑘. Say A is of size n.

As it is also known that applying permutation matrix(or any other invertible 
matrix) to 𝐴 doesn’t change kernel of 𝐴, one permutate 𝐴 so that:

𝐴 𝑎 =
𝑋(𝑎) 𝑋 𝑎 𝑌(𝑎)
𝑍(𝑎) 𝑍(𝑎)𝑌(𝑎)

Where 𝑋(𝑎) is invertible matrix of size k.(Thus, rank 𝑘). Then basis of kernel is

−𝑌 𝑎 𝑒1
𝑒1

,
−𝑌 𝑎 𝑒2

𝑒2
…

−𝑌 𝑎 𝑒𝑛−𝑘
𝑒𝑛−𝑘

, where 𝑒𝑖 is standard basis of ℝ𝑛−𝑘.



Problem Reduction

There is no quantum finite automaton that has the following 
property simultaneously for every 𝜖 ∈ [−

1

2
,
1

2
]\ {0}: 

Given access to an infinite sequence of coin tosses, if the coin is 
( 1/2 + 𝜖)-biased then the automaton spends at least 2/3 of its 
time guessing “biased”, and if the coin is fair then the 
automaton spends at least 2/3 of its time guessing “fair”.



Problem Reduction-classic version

There is no finite automaton that has the following property 
simultaneously for every 𝜖 ∈ [−

1

2
,
1

2
]\ {0}: 

Given access to an infinite sequence of coin tosses, if the coin is 
( 1/2 + 𝜖)-biased then the automaton spends at least 2/3 of its 
time guessing “biased”, and if the coin is fair then the 
automaton spends at least 2/3 of its time guessing “fair”.



Problem Reduction-classic version

S2
(fair)

S1
(fair)

S3
(biased)

0

1

Current state

With infinite input string 
consisted of 0, 1 that is 
result of coin toss of 
probability 𝑝, do there 
exist FA that detects 
biased coin?

…

…

…

FA



Problem Reduction-classic version

0:1.0

1:1.0

Current state

With infinite input string 
consisted of 0, 1 that is 
result of coin toss of 
probability 𝑝, do there 
exist FA that detects 
biased coin?

…

…

…

Probabilistic FA

S1
(fair)

S2
(fair)

S3
(biased)



Problem Reduction-classic version

0: 𝑝

0: 1 − 𝑝

Current state

With infinite input string 
consisted of just 0, do 
there exists probabilistic 
finite automata that 
detects biased coin?

…

…

…

Probabilistic FA

S1
(fair)

S2
(fair)

S3
(biased)



Problem Reduction-classic version

Formally,

Let 𝑆0, 𝑆1 be the stochastic matrix, then probabilistic automata applies 𝑆0 
when current input is 0 and applies 𝑆1 when current input is 1.

equivalent with,
Probabilistic automata applies 𝑆𝑝: = 𝑝𝑆1 + 1 − 𝑝 𝑆0.



Problem Reduction

Φ0(𝜌)
(fair)

𝜌
(fair)

Φ1(𝜌)
(biased)

0

1

Current state
…

…

…

QFA

With infinite input string 
consisted of 0, 1 that is 
result of coin toss of 
probability 𝑝, do there 
exist QFA that detects 
biased coin?



Problem Reduction

Φ𝑝(𝜌)

𝜌

Current state
…

…

…

QFA

Φ𝑝 ≔ 𝑝Φ1 + 1 − 𝑝 Φ0

Φ𝑝
2(𝜌)

0

0

0



Problem Reduction

Enough to show:
There exists no quantum finite automaton 𝑄𝑝 =
(𝜋0, 𝑆, Φ𝑝, {𝐸𝑓𝑎𝑖𝑟 , 𝐼 − 𝐸𝑓𝑎𝑖𝑟}) where
𝑆 is set of quantum (mixed) states,
𝜋0 is start state.
Φ𝑝 is quantum channel that is convex combination of some other 
quantum channels Φ0, Φ1 i.e. Φ𝑝 ≔ 𝑝Φ1 + 1 − 𝑝 Φ0

{𝐸𝑓𝑎𝑖𝑟 , 𝐼 − 𝐸𝑓𝑎𝑖𝑟} is POVM that probabilistically checks whether state is 
labelled fair of biased : for  s ∈ 𝑆, 𝐸𝑓𝑎𝑖𝑟 , 𝑠 is probability that automaton 
may measure state s as fair state 



Problem Reduction

Enough to show:
There exists no quantum finite automaton 𝑄𝑝 = (𝜋0, 𝑆, Φ𝑝, {𝐸𝑓𝑎𝑖𝑟 , 𝐼 −
𝐸𝑓𝑎𝑖𝑟}) such that 𝑄𝑝 ‘ detects’ whether 𝑝 is ½ or not.

Defn
Let 𝑓 𝑝 := lim

𝑇→∞

1

𝑇
(σ𝑡=1

𝑇 𝐸𝑓𝑎𝑖𝑟 , Φ𝑝
𝑡𝜋0 )

We will say QFA outputs fair for given 𝑝 if 𝑓 𝑝 ≥
2

3
. Otherwise, biased.



Problem Reduction

Enough to show:

𝑓 is continuous for 𝑝 ∈ (0,1).
(∵If f is continuous one can reduce 𝜖 as much as needed to ‘fool’ the QFA.)

Definition 
Let 𝑓 𝑝 := lim

𝑇→∞

1

𝑇
(σ𝑡=1

𝑇 𝐸𝑓𝑎𝑖𝑟 , Φ𝑝
𝑡𝜋0 )

We will say QFA outputs fair for given 𝑝 if 𝑓 𝑝 ≥
2

3
. Otherwise, biased.



Problem Reduction

𝑓 𝑝 := lim
𝑇→∞

1

𝑇
(σ𝑡=1

𝑇 𝐸𝑓𝑎𝑖𝑟 , Φ𝑝
𝑡𝜋0 ) = 𝐸𝑓𝑎𝑖𝑟 , ෢Φ𝑝

∞𝜋0 = 𝐸𝑓𝑎𝑖𝑟 , Φ𝑝
∞𝜋0 (Cesàro Mean)

Enough to show:
Φ𝑝
∞ is continuous.

As Φ𝑝
∞ is projection onto 𝑉1(Φ𝑝),

one possible obstruction is when dimension of 𝑉1(Φ𝑝) changes with small change of p.



Problem Reduction

Enough to show:
Φ𝑝
∞ is continuous.

One possible obstruction: Dimesion of 𝑉1(Φ𝑝) changes with small change of p.

Assume dim 𝑉1(Φ𝑝) constant.

Notice, 𝑥 ∈ 𝑉1 Φ𝑝 iff Φ𝑝 𝑥 = 𝑥 iff 𝐼 − Φ𝑝 (𝑥) = 0 iff 𝑥 ∈ ker 𝐼 − Φ𝑝 , 𝑉1 Φ𝑝 =
ker 𝐼 − Φ𝑝 .By assumption, nullity of 𝐼 − Φ𝑝 also constant. 

By previous thm, ker 𝐼 − Φ𝑝 continuous, .



Problem Reduction

Enough to show:
dim 𝑉1(Φ𝑝) is constant for all 𝑝 ∈ (0,1). Classical version of solving it?



Recap Markov chain

Given S as a stochastic matrix, it is known 𝑉1 𝑆 is spanned by a linearly independent set 
of invariant probabilistic-states. 

∴ dim𝑉1(𝑆) is equal to the number of linearly independent invariant distributions

There is one linearly independent invariant distribution per every communication class 
of the Markov chain.

Communication class: Strongly connected components of the underlying digraph



Quantum analogous known facts

Given Φ as a quantum channel, it is known 𝑉1 Φ is spanned by a linearly independent 
set of (quantum) states. 

Minimal enclosure is analogous to communicating class. 

Enclosure: A closed subspace 𝑉 is an enclosure for Φ if, for any state 𝜌, 𝑠𝑢𝑝𝑝 𝜌 ⊂
𝑉 implies 𝑠𝑢𝑝𝑝 (Φ 𝜌 ) ⊂ 𝑉

s𝑢𝑝𝑝(𝜌): Range of 𝜌.(As it is density operator)

Minimal enclosure: 𝑉 is nonzero and all subset of 𝑉 which is also enclosure is rather zero 
or 𝑉.



Quantum analogous known facts

Minimal enclosure is analogous to communicating class. 

Known facts:

𝑉 is an enclosure for Φ if and only if 𝐾𝑖𝑉 ⊆ 𝑉 for all Kraus operators of Φ.

Minimal enclosure decomposition(decomposes Hilbert space as direct sum) can be 
constructed for Φ(analogous to identifying strongly connected component in digraph)

dim𝑉1 Φ derives rather directly from minimal enclosure decomposition.



Problem Reduction

Definition
We will say that two channels Φ and ෡Φ (with the same Hilbert space ℋ) are 
combinatorially equivalent if there are Kraus operators 𝐾1, . . . , 𝐾𝑟 for Φ and ෢𝐾1, . . . , ෢𝐾 Ƹ𝑟for ෡Φ
such that each 𝐾𝑖 is proportional to some ෢𝐾𝑖′ and vice versa.

Theorem . All 𝚽𝐩 are combinatorially equivalent.

Proof can be given by claiming this:

Let Φ0, Φ1 have Kraus operators {𝐾𝑖
0
: 𝑖 ∈ [𝑟0]}, {𝐾𝑗

1
: 𝑗 ∈ [𝑟1]} respectively,

the channel Φ𝑝 = 𝑝Φ1 + 1 − 𝑝 Φ0 has Kraus operators 1 − 𝑝𝐾𝑖
(0)
: 𝑖 ∈ 𝑟0 ∪

𝑝𝐾𝑗
(1)
: 𝑗 ∈ 𝑟1 . 



Problem Reduction

Theorem . All 𝚽𝐩 are combinatorially equivalent.

Let Φ0, Φ1 have Kraus operators {𝐾𝑖
0
: 𝑖 ∈ [𝑟0]}, {𝐾𝑗

1
: 𝑗 ∈ [𝑟1]} respectively,

the channel Φ𝑝 = 𝑝Φ1 + 1 − 𝑝 Φ0 has Kraus operators 1 − 𝑝𝐾𝑖
(0)
: 𝑖 ∈ 𝑟0 ∪

𝑝𝐾𝑗
(1)
: 𝑗 ∈ 𝑟1 . 

Φ𝑝 𝑥 = 𝑝Φ1 𝑥 + 1 − 𝑝 Φ0 𝑥 = 𝑝Σ𝑖∈[𝑟0]𝐾𝑖
0
𝑥𝐾𝑖

0 ∗
+ 1 − 𝑝 Σ𝑗∈[𝑟1]𝐾𝑗

1
𝑥𝐾𝑗

1 ∗

= Σ𝑖∈[𝑟0] 𝑝𝐾𝑖
0
𝑥( 𝑝𝐾𝑖

0
)∗ + Σ𝑗∈[𝑟1] 1 − 𝑝𝐾𝑗

1
𝑥( 1 − 𝑝𝐾𝑗

1
)∗ ∎



Proof

Enough to show:
If Φ and ෡Φ are combinatorially equivalent, then they have same minimal enclosure 
decomposition.   

This requires rather technical approach, but is fundamentally driven from this fact:

𝑉 is an enclosure for Φ if and only if 𝐾𝑖𝑉 ⊆ 𝑉 for any Kraus operators of Φ.
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