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Introduction

Introduction

Today we will summarize the past 3 sessions.

1. How is a 2(1)-way QFA, QTM defined and its expressive power?

2. The complexity hierarchy.

3. Example problems in complexity hierarchy.

4. The biased coin toss problem(the background side)
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Preliminary

Deterministic Finite State Automata

DFA: A deterministic finite state automaton (DFA) is a 5-tuple (Q,Σ, δ, q0, F ),
where

1. Q is a finite set of states;

2. Σ is a finite input alphabet;

3. δ : Q× Σ → Q is a transition function;

4. q0 ∈ Q is the initial state; and

5. F ⊆ Q is a set of (final) accepting states.
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Preliminary

2-Way Deterministic Finite State Automata
Definition

2DFA: A 2-way deterministic finite state automaton (2DFA) is a
6-tuple (Q,Σ, δ, q0, Qacc, Qrej), where

1. δ : Q× d→ Q× {−1, 0, 1} is a transition function; and

2. Qacc ⊆ Q and Qrej ⊆ Q are the sets of accepting states and rejecting states,
respectively.
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Preliminary

2-Way Deterministic Finite State Automata
Details

Details:

1. Qnon := Q \ (Qacc ∪Qrej);

2. q0 ∈ Qnon;

3. Qacc ∩Qrej = ∅;
4. ¢ /∈ Σ and $ /∈ Σ are the start of string and end of string symbols,

respectively; and

5. The tape alphabet Γ := Σ ∪ {¢, $}.
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Preliminary

Turing machine
definition

TM: A (deterministic) Turing machine is a 7-tuple M = (Q,Γ, b,Σ, δ, q0, F ),
where

1. δ : Σ×Q⊗ Γ → Σ×Q⊗ Γ×−1, 1

2. F ∈ Q is the set of accepting states.
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Preliminary

Turing machine
Details

Details:

1. b ∈ Γ is the blank symbol;

2. An initial state q0 ∈ Q, and accepting states F ∈ Q;
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Preliminary

2-Way Probabilistic Finite State Automata
Definition

2PFA: A 2-way probabilistic finite state automaton (2PFA) is a
6-tuple (Q,Σ, δ, q0, Qacc, Qrej), where

δ : (Q× Γ)× (Q× {−1, 0, 1}) → R.

A distribution of M on x is a probabilistic distribution D : Cn → R.
1. For each c ∈ Cn, [[c]] is denotes the distribution c 7→ 1.

2. We can denote a distribution D by
∑
c∈Cn

pc · [[c]],
where pc := D(c).

SeungYeop Baik (Yonsei Univ.) Computability of Quantum Devices 10 / 52



Preliminary

2-Way Probabilistic Finite State Automata
Operator

δ : (Q× Γ)× (Q× {−1, 0, 1}) → R

The operator Uxδ : D 7→ Uxδ D is defined as:

Uxδ [[q, k]] :=
∑
q′,d

δ(q, x(k), q′, d) · [[q′, k + d]],

and is extended to all distributions of M on x by linearity.

q1 q2a/R, 0.6
Note
δ is restricted to Uxδ be valid. What should the restriction be?
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Preliminary

Tapes

A tape is a mapping x : Zn → Γ, where n =: |x| is the length of the tape.
We can modify the definition to match each variant of a DFA, 2DFA, 2PFA, and a
TM.

For DFAs and PFAs, a string w = w1 · · ·w|w| ∈ Σ∗, we define the tape xw of w as

1. xw(0) := ¢,
2. xw(i) := wi for 1 ≤ i ≤ |w|, and
3. xw(|w|+ 1) := $.

For TMs, a string w = w1 · · ·w|w| ∈ Σ ∪ b∗, we define the tape xw of w as

1. xw(i) := wi for 1 ≤ i ≤ |w|, and
2. xw(j) := b for j ≤ 0 and j ≥ |w|+ 1).
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Preliminary

Configurations

Fix a DFA M := (Q,Σ, δ, q0, F ) and a tape x with length n. Cn := Q× Zn is
the set of configurations of M .

The time-evolution operator Uxδ : Cn → Cn of M on tape x is defined as:

Uxδ (q, k) := (p, k + d),

where δ(q, x(k)) := (p, d) ∈ Q× {1}.

For each time step t, let (qt, ) := (Uxδ )
t(q0, 0).

If qt ∈ Qacc, then M accepts a string w at a time step t.
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Preliminary

Configurations

Fix a 2DFA M := (Q,Σ, δ, q0, Qacc, Qrej) and a tape x with length n.
Cn := Q× Zn is the set of configurations of M .

The time-evolution operator Uxδ : Cn → Cn of M on tape x is defined as:

Uxδ (q, k) := (p, k + d),

where δ(q, x(k)) := (p, d) ∈ Q× {−1, 0, 1}.

For each time step t, let (qt, ) := (Uxδ )
t(q0, 0).

If qt ∈ Qacc, then M accepts a string w at a time step t.
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Preliminary

Configurations

Fix a TM M := (Q,Γ, b,Σ, δ, q0, F ) and a tape x with length n.
Cn := Q× ZnΣn is the set of configurations of M .

The time-evolution operator Uxδ : Cn → Cn of M on tape x is defined as:

Uxδ (q, k) := (p, σ, k + d),

where δ(q, x(k)) := (p, σ, d) ∈ Q× Σ× {−1, 0, 1}.

For each time step t, let (qt, ) := (Uxδ )
t(q0, 0).

If qt ∈ Qacc, then M accepts a string w at a time step t.
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Preliminary

Known Results

Known results:

1. DFA and 2DFA have the same power of expression (regular).

2. Under constant error bound and exponential expected time constraints, 2PFA
can express the non-regular language {anbn | n > 0}.

3. Under constant error bound and polynomial expected time constraints, 2PFA
cannot express non-regular languages.

Theorem (Dwork89)
For any 2PFA recognizing a non-regular language with a constant error bound, the
2PFA must take exponential expected time with respect to the length of the input.
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Quantum versions of a Automata

Definition of Quantum Automata

2QFA: A 2-way quantum finite state automaton (2QFA) is a
6-tuple (Q,Σ, δ, q0, Qacc, Qrej), where

δ : Q× Γ×Q× {−1, 0, 1} → C.

1QFA: A 1-way quantum finite state automaton (1QFA) is a 2QFA
M = (Q,Σ, δ, q0, Qacc, Qrej) where

1. δ : Q× Γ×Q× {1} → C,
2. δ(q, σ, q′, 1) = ⟨q′|Vσ|q⟩, and
3. δ(q, σ, q′, 0) = δ(q, σ, q′,−1) = 0.
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Quantum versions of a Automata

Definition of Quantum Automata

QTM: A quantum Turing machine (QTM) is a 7-tuple (Q,Γ, b,Σ, δ, q0, F ), where

1. Q is a set of states on a Hilbert Space.

2. δ : (Γ×Q)× (Σ×Q× {−1, 0, 1}) → C,
3. q0 ∈ Q is a pure or mixed state, and
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Quantum versions of a Automata

Configurations of Quantum Automata

A superposition of M on x is a |Cn|-dimensional quantum state.

1. Hn denotes the set of all superpositions.

2. For each c ∈ Cn, |c⟩ denotes the unit vector with value 1 at c.

3. For |ψ⟩ =
∑
c∈Cn

αc|c⟩, αc ∈ C is the amplitude of c in |ψ⟩.
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Quantum versions of a Automata

Transitions of 2QFA

δ : (Q× Γ)× (Q× {−1, 0, 1}) → C.

For a tape x, the time-evolution operator Uxδ : Hn → Hn of M on tape x is
defined as:

Uxδ |q, k⟩ :=
∑

δ(q, x(k), q′, d) · |q′, k + d⟩,

and is extended to all |ψ⟩ ∈ Hn by linearity.

Note
▶ δ is restricted to Uxδ be valid, that is, Uxδ must be unitary.

▶ The configuration of M is in “superposition”, we must “carefully observe”
whether the configuration is accepting.
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Quantum versions of a Automata

Transitions of a QTM

· · ·

end-of-comp.

Q

Z

ΣZ

U U U

δ : (Σ×Q× Γ)× (Σ×Q× {−1, 0, 1}) → C.
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Quantum versions of a Automata

Configuration of QTM

Let HA be a Hilbert space containing A.

A configuration (q, x, w) ∈ Q× Z× ΣZ of Q is encoded into (infinite) qubits as
|q;x;w⟩ = |q⟩ ⊗ |x⟩ ⊗ |w⟩ ∈ HQ ⊕HZ ⊕HΣZ .

Note that, even we describe a QTM configuration in infinite qubits, we only use a
finite portion of them to compute effectively.
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Quantum versions of a Automata

Observables

An observable O is a decomposition {E1, . . . , Ek} of the Hilbert space Hn into
subspaces, where

▶ Hn = E1 ⊕ E2 · · · ⊕ Ek; and

▶ Ej are pairwise orthogonal.

Consider that we observe |ψ⟩ ∈ Hn with an observable O = {E1, . . . , Ek}.
Let |ψj⟩ be the projection of |ψ⟩ onto Ej .
Then, after the observation,

1. We observe each outcome j with probability ∥|ψj⟩∥2.
2. The machine “collapse” to 1

∥|ψj⟩∥ |ψj⟩.

Note
It is similar to conditional probabilities.

SeungYeop Baik (Yonsei Univ.) Computability of Quantum Devices 24 / 52



Quantum versions of a Automata

Observables (Examples)

Let |ψ⟩ = 1
2 |00⟩+

1
2 |01⟩+

1
2 |10⟩+

1
2 |11⟩.

1. Using observable {⟨|00⟩⟩, ⟨|10⟩⟩, ⟨|01⟩⟩, ⟨|11⟩⟩}, with the same
probability 0.25,
▶ |ψ⟩ collapses to |00⟩, |10⟩, |01⟩, or |11⟩.

2. Using observable {⟨|00⟩, |10⟩⟩, ⟨|01⟩, |11⟩⟩}, with the same probability 0.5,

▶ |ψ⟩ collapses to
√

2
2
(|00⟩+ |10⟩); or

▶ |ψ⟩ collapses to
√
2

2
(|01⟩+ |11⟩).
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Quantum versions of a Automata

Observable of 2QFA

For a 2QFA M and an input x,
we use an observable O := {Eacc, Erej, Enon}, where
▶ Eacc := ⟨Cacc⟩, Cacc := Qacc × Zn

(Cacc is the set of all accepting configurations);

▶ Erej := ⟨Crej⟩, Crej := Qrej × Zn; and
▶ Enon := ⟨Cnon⟩, Cnon := Qnon × Zn.

|ψ⟩

Eacc

Erej
Enon

|ψ ′⟩

Observation
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Expressive powers of Quantum Automata

2QFA

A 2QFA can recognize a non-regular language {anbn | n > 0},
and the non-context-free language {anbncn | n > 0}.
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Expressive powers of Quantum Automata

Total-States and Computation of 1QFA

A total-state of an 1QFA M is (ψ, pacc, prej) ∈ V := ℓ2(Q)× R× R.
Intuitively,

1. ψ denotes unnormalized superposition |ψ⟩,
2. pacc is the (accumulated) accepting probability, and

3. prej is the rejecting probability.

The intuition become clearer with the following operator Tσ.

Tσ : (ψ, pacc, prej)

7→ (PnonVσψ, ∥PaccVσψ∥2 + pacc, ∥PrejVσψ∥2 + prej),

where Pacc, Prej and Pnon are the projection matrices
onto ⟨Qacc⟩, ⟨Qrej⟩ and ⟨Qnon⟩.
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Expressive powers of Quantum Automata

Distance of Total-States

Tσ : V : (ψ, pacc, prej)

7→ (PnonVσψ, ∥PaccVσψ∥2 + pacc, ∥PrejVσψ∥2 + prej),

For two total-states v = (ψ, pacc, prej) and v
′ = (ψ′, p′acc, p

′
rej),

we define a norm of v as:

∥v∥ :=
1

2
(∥ψ∥+ |pacc|+ |prej|).

Then a distance between total-states v and v′ is

d(v, v′) := ∥v − v′∥.
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Expressive powers of Quantum Automata

Reachable Total-States

If v = T¢w|q0, 0, 0⟩ for some w ∈ Σ∗, we call v is reachable by w.

Let B := {v ∈ V | ∥v∥ ≤ 1}.
Clearly, any valid total-state v must be in B.

Note that

1. Tx increases the distance at most linearly: d(Tσv, Tσv
′) ≤ c · d(v, v′),

2. A ⊂ B and ∃ϵ > 0,∀v, v′ ∈ A, d(v, v′) > ϵ implies A is finite.
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Expressive powers of Quantum Automata

QTM and quantum circuits

Remark
For a language L, the followings are equivalent:

1. There exists a poly-time QTM Q for L.

2. There exists a uniform family of quantum circuits {Qn}n and a poly-time
DTM M such that ⟨Qn⟩ = M(1n) and Q|⟨w⟩|(⟨w⟩) = 1(w ∈ L). Qn may
have poly(n) ancilla qubits initialized to |0⟩.
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Computation complexity

Complexity hierarchy

P

NP=MA[1]

PH

PSPACE=IP[poly]=IP=QIP=QIP[3]

BPP=IP[1]=AM[1]

PP=PQP

BQP=QIP[0]

AMdef.
= AM[2]=IP[2]

MAdef.
= MA[2]

QMA=QIP[1]

C[k]: k machine activations; QIP has a slightly different definition: k messages passing.
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Computation complexity BQP

Bounded quantum polynomial

BQP: The class BQP contains a language L which has a polynomial QTM Q
with error bounded by 0 ≤ c < 0.5.
Formally, ∃Q∃c∀w [c ∈ [0, 0.5) ∧ Pr[Q(⟨w⟩) ̸= 1(w ∈ L)] ≤ c].
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Computation complexity BQP

Bounded quantum polynomial

BQP: The class BQP contains a language L which has a polynomial QTM Q
with error bounded by c = 1/3.
Formally, ∃Q∀w

[
Pr[Q(⟨w⟩) ̸= 1(w ∈ L)] ≤ 1

3

]
.
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Computation complexity BQP

Implication of BQP

Let O be an oracle for a BQP language L; we can effectively decide w ∈ L by
querying O repeatedly.

1: given: input w and iteration count i
2: for j ∈ [1, i] do
3: collect O(w)
4: end for
5: return majority
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Computation complexity BQP

Implication of BQP

Let O be an oracle for a BQP language L; we can effectively decide w ∈ L by
querying O repeatedly.

i = 1 T F
P > N ≥ 2/3 ≥ 1/3
P < N ≤ 1/3 ≤ 2/3
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Computation complexity BQP

Implication of BQP

Let O be an oracle for a BQP language L; we can effectively decide w ∈ L by
querying O repeatedly.

i = n1 T F
P > N ≥ 1− δ ≤ δ
P < N ≤ δ ≥ 1− δ

1n ≥ −48 log δ
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Computation complexity Arthur-Merlin

Interactive proof system

Assume a statement is given and there are two people to prove this statement:
prover (P) and verifier (V).

▶ P tries to convince V that the given statement is true.

▶ V checks P’s proof with randomness.

The system accept/reject the statement by passing messages between the two.

It is important that P is unreliable; He may give a false proof.

P

V

Pf. Rsp.
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Computation complexity Arthur-Merlin

Interactive proof system

Assume a

P ̸= NP, w ∈ L, ϕ satisfiable, etc.

statement is given and there are two people to prove this statement:
prover (P) and verifier (V).

▶ P tries to convince V that the given statement is true.

▶ V checks P’s proof with randomness.

The system accept/reject the statement by passing messages between the two.

It is important that P is unreliable; He may give a false proof.

P

V

Pf. Rsp.
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Computation complexity Arthur-Merlin

Arthur-Merlin Framework

Arthur-Merlin framework is another name of the interactive proof system, where
we have two machines: Merlin (P) and Arthur (V) with the random coin tosses of
Arthur must be revealed.

A language L is in the class Merlin-Arthur (MA) if, there exists a poly-time
probabilistic machine (Arthur, V) such that,

▶ ∀x ∈ L, there exists a proof that makes V accept the statement with prob.
at least 2/3.

▶ ∀x /∈ L, for any proof, V accepts the statement with prob. at most 1/3.
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Computation complexity Arthur-Merlin

QMA

The QMA class is similar to MA; but here, Arthur is a quantum device without
randomness, and the proof is a quantum state (superposition) encoded in a
poly-number of qubits.

Formally,
QMA: A language L is in class QMA if there exists a poly-time quantum verifier
V such that

▶ ∀x ∈ L, ∃|ψ⟩ Pr[V (|x⟩, |ψ⟩) = 1] ≥ 2/3,

▶ ∀x /∈ L, ∀|ψ⟩ Pr[V (|x⟩, |ψ⟩) = 1] ≤ 1/3,

where |ψ⟩ is encoded in poly(|x|) qubits.

Note that V is a BQP machine.

SeungYeop Baik (Yonsei Univ.) Computability of Quantum Devices 39 / 52



Computation complexity Arthur-Merlin

Analogy

BQP and QMA has similar relation to P and NP.

▶ Any language L in NP has a poly-time verifier V checking certificate.

▶ Any language L in QMA has a BQP verifier V checking certificate with high
prob..
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Computation complexity Complete problems

Recap: reduction

Oracle TM: A TM M with oracle O is a TM together with

▶ a dedicated tape for the oracle O,

▶ two dedicated states Ostart and Oend.

The oracle O will read an input and write the output using the dedicated tape; in
the view of TM M , this takes a single computation step.
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Computation complexity Complete problems

Recap: reduction

Turing reduction: For two languages A and B, A Turing reduction from A to B
is a TM M with B oracle that decides w ∈ A. If there exists a Turing reduction,
A is B-computable.
Then, we can recognize A using any machine recognizing B.

Remark
If Turing reduction (from A to B) runs in polynomial time, it is Cook reduction.
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Computation complexity Complete problems

BQP-complete

BQP-hard: A language L is BQP-hard if every BQP language L′ has a
BPP (bounded probabilistic polynomial) TM with an oracle for L. (Assuming that
BPP ̸= BQP.)

Remark
There are no known BQP-complete problems yet.
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Computation complexity Complete problems

Promise problem

Promise problem: A promise problem P : Σ∗ → {0, 1} has two disjoint
languages L1, L0 ∈ Σ∗, where

▶ P (w) = 1 when w ∈ L1 and

▶ P (w) = 0 when w ∈ L0.

The language L = L1 ∪ L0 is the promise of P .
Note that, for w /∈ L, P (w) has no requirements.

Remark
A decision problem L is equivalent to a promise problem (L,Σ∗ \ L).
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Computation complexity Complete problems

Promise problem

Deutsch-Jozsa: For given an oracle for a constant or balanced function
function f : {0, 1}n → {0, 1}, determine if f is constant.
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Computation complexity Complete problems

Promise problem

Deutsch-Jozsa: For given an oracle for a

Promise (L1 ∪ L0)

constant or balanced function
function f : {0, 1}n → {0, 1}, determine if

L1

f is constant.
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Computation complexity Complete problems

BQP-complete

Problem (Canonical PromiseBQP problem)
Given a family {Qn}n of poly-size uniform quantum circuits associated with two
disjoint languages L1 and L0, and an input x ∈ L1 ∪ L0 with the promise that
Q|x|(x) gives

▶ 1 with prob. at least 2/3 for all x ∈ L1,

▶ 1 with prob. at most 1/3 for all x ∈ L0,

determine that which case holds, i.e., determine that the probability of
Q|x|(x) = 1 is either above 2/3, or below 1/3.
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Computation complexity Complete problems

BQP-complete

Problem (Canonical PromiseBQP problem)
Given a family {Qn}n of poly-size uniform quantum circuits associated with two
disjoint languages L1 and L0, and an input x ∈ L1 ∪ L0 with the promise that
Q|x|(x) gives
In decision version, there may be a circuit that does not satisfy this condition.

▶ 1 with prob. at least 2/3 for all x ∈ L1,

▶ 1 with prob. at most 1/3 for all x ∈ L0,

determine that which case holds, i.e., determine that the probability of
Q|x|(x) = 1 is either above 2/3, or below 1/3.
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Computation complexity Complete problems

BQP-complete

Assume: an oracle O for the canonical problem.
For a PromiseBQP problem (L1, L0), ∃DTM M that generates a family
{Qn =M(1n)}n of quantum circuits.

Then, we can solve (L1, L0) by the following algorithm.

1. Query O with input ⟨M,x⟩.
2. Return [Prob. is at least 2/3] iff O gives an output 1.

This is a (det. linear time, with the oracle O) reduction to the canonical problem.
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Computation complexity Complete problems

BQP-complete

Assume: an oracle O for the canonical problem.
For a PromiseBQP problem (L1, L0), ∃DTM M that generates a family
{Qn =M(1n)}n of quantum circuits.

Then, we can solve (L1, L0) by the following algorithm.

1. Query O with input

M fixed; copy x to oracle tape.

⟨M,x⟩.
2. Return [Prob. is at least 2/3] iff O gives an output 1.

This is a (det. linear time, with the oracle O) reduction to the canonical problem.
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Computation complexity Complete problems

QMA-complete

Problem (QCSAT)
(A quantum variant of classical circuit SAT problem) Given a quantum circuit Q,
with n input qubits and m ancilla qubits with the promise that Q is either

▶ ∃|ψ⟩ such that Q(|ψ⟩) accepts with prob. at least 2/3 or

▶ ∀|ψ⟩, Q(|ψ⟩) accepts with prob. at most 1/3,

determine that which case holds.

Reduction is similar to that for the canonical BQP problem.
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Computation complexity Complete problems

Complete problems

From [?] (BQP-c) and [?] (QMA-c) (This has several others),
BQP-complete:

▶ A sampling variant of k-local Hamiltonian: approximate distribution of
k-local Hamiltonian’s eigenvalues.

QMA-complete:

▶ Quantum circuit equivalence: Deciding whether two quantum circuits are
equivalent

▶ k-local Hamiltonian: Find the smallest eigenvalue of k-local Hamiltonian.
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Overview

Introduction

Preliminary

Quantum versions of a Automata

Expressive powers of Quantum Automata

Computation complexity

Biased coin toss

SeungYeop Baik (Yonsei Univ.) Computability of Quantum Devices 50 / 52



Biased coin toss

The biased coin toss problem

Biased Coin Toss: Given an infinite seq of coin tosses (HTHTT. . . ) such that
each toss is an independent event, investigate the ability of a finite automaton to
distinguish fair coin, or biased (p = 1

2 ± ϵ) coin
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Biased coin toss

Backgrounds

1. What is a mixed state?

2. Extending unitary operation to a mixed state.

3. Distance between spaces?
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