Computability of Quantum Devices

SeungYeop Baik

Yonsei University

Nov. 22, 2023

SeungYeop Baik (Yonsei Univ.)

Computability of Quantum Devices

Introduction

Overview

Introduction

Preliminary

Quantum versions of a Automata

Expressive powers of Quantum Automata

Computation complexity

Biased coin toss

Introduction

Today we will summarize the past 3 sessions.

- 1. How is a 2(1)-way QFA, QTM defined and its expressive power?
- 2. The complexity hierarchy.
- 3. Example problems in complexity hierarchy.
- 4. The biased coin toss problem(the background side)

Overview

Introduction

Preliminary

Quantum versions of a Automata

Expressive powers of Quantum Automata

Computation complexity

Biased coin toss

SeungYeop Baik (Yonsei Univ.)

Computability of Quantum Devices

Deterministic Finite State Automata

DFA: A deterministic finite state automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of *states*;
- 2. Σ is a finite *input alphabet*;
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is a transition function;
- 4. $q_0 \in Q$ is the *initial state*; and
- 5. $F \subseteq Q$ is a set of *(final) accepting states.*

2-Way Deterministic Finite State Automata Definition

2DFA: A 2-way deterministic finite state automaton (2DFA) is a 6-tuple $(Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$, where

- 1. $\delta: Q \times d \rightarrow Q \times \{-1, 0, 1\}$ is a *transition function*; and
- 2. $Q_{acc} \subseteq Q$ and $Q_{rej} \subseteq Q$ are the sets of *accepting states* and *rejecting states*, respectively.

2-Way Deterministic Finite State Automata Details

Details:

- 1. $Q_{non} := Q \setminus (Q_{acc} \cup Q_{rej});$
- 2. $q_0 \in Q_{non}$;
- 3. $Q_{\mathsf{acc}} \cap Q_{\mathsf{rej}} = \emptyset;$
- 4. $\notin \notin \Sigma$ and $\$ \notin \Sigma$ are the *start of string* and *end of string* symbols, respectively; and
- 5. The tape alphabet $\Gamma := \Sigma \cup \{ \mathsf{c}, \$ \}$.

Turing machine

definition

TM: A (deterministic) Turing machine is a 7-tuple $\mathcal{M} = (Q, \Gamma, b, \Sigma, \delta, q_0, F)$, where

- 1. $\delta: \Sigma \times Q \otimes \Gamma \to \Sigma \times Q \otimes \Gamma \times -1, 1$
- 2. $F \in Q$ is the set of accepting states.

Turing machine Details

Details:

- 1. $b \in \Gamma$ is the blank symbol;
- 2. An initial state $q_0 \in Q$, and accepting states $F \in Q$;

2-Way Probabilistic Finite State Automata

2PFA: A 2-way probabilistic finite state automaton (2PFA) is a 6-tuple $(Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$, where

 $\delta: \underline{(Q \times \Gamma)} \times \underline{(Q \times \{-1, 0, 1\})} \to \mathbb{R}.$

A distribution of M on x is a probabilistic distribution $D: C_n \to \mathbb{R}$.

- 1. For each $c \in C_n$, $\llbracket c \rrbracket$ is denotes the distribution $c \mapsto 1$.
- 2. We can denote a distribution D by $\sum_{c \in C_n} p_c \cdot \llbracket c \rrbracket$, where $p_c := D(c)$.

2-Way Probabilistic Finite State Automata Operator

$\delta:\underline{(Q\times\Gamma)}\times\underline{(Q\times\{-1,0,1\})}\to\mathbb{R}$

The operator $U^x_{\delta}: D \mapsto U^x_{\delta}D$ is defined as:

$$U^x_{\delta}\llbracket q,k \rrbracket := \sum_{q',d} \delta(\underline{q,x(k)},\underline{q',d}) \cdot \llbracket q',k+d \rrbracket,$$

and is extended to all distributions of M on x by linearity.

$$(q_1)$$
 $a/R, 0.6$ q_2

Note

 δ is restricted to U^x_{δ} be valid. What should the restriction be?

SeungYeop Baik (Yonsei Univ.)

Tapes

A *tape* is a mapping $x : \mathbb{Z}_n \to \Gamma$, where n =: |x| is the length of the tape. We can modify the definition to match each variant of a DFA, 2DFA, 2PFA, and a TM.

For DFAs and PFAs, a string $w = w_1 \cdots w_{|w|} \in \Sigma^*$, we define the tape x_w of w as

1.
$$x_w(0) := \emptyset$$
,
2. $x_w(i) := w_i$ for $1 \le i \le |w|$, and
3. $x_w(|w| + 1) := \$$.

For TMs, a string $w = w_1 \cdots w_{|w|} \in \Sigma \cup b^*$, we define the tape x_w of w as 1. $x_w(i) := w_i$ for $1 \le i \le |w|$, and 2. $x_w(j) := b$ for $j \le 0$ and $j \ge |w| + 1$).

SeungYeop Baik (Yonsei Univ.)

Configurations

Fix a DFA $\mathcal{M} := (Q, \Sigma, \delta, q_0, F)$ and a tape x with length n. $C_n := Q \times \mathbb{Z}_n$ is the set of *configurations* of M.

The *time-evolution operator* $U^x_{\delta} : C_n \to C_n$ of M on tape x is defined as:

$$U^x_\delta(q,k) := (p,k+d),$$

where $\delta(q, x(k)) := (p, d) \in Q \times \{1\}.$

For each time step t, let $(q_t, _) := (U_{\delta}^x)^t(q_0, 0)$. If $q_t \in Q_{acc}$, then *M* accepts a string *w* at a time step t.

Configurations

Fix a 2DFA $\mathcal{M} := (Q, \Sigma, \delta, q_0, Q_{\mathsf{acc}}, Q_{\mathsf{rej}})$ and a tape x with length n. $C_n := Q \times \mathbb{Z}_n$ is the set of *configurations* of M.

The time-evolution operator $U_{\delta}^{x}: C_{n} \to C_{n}$ of M on tape x is defined as:

$$U^x_\delta(q,k) := (p,k+d),$$

where $\delta(q, x(k)) := (p, d) \in Q \times \{-1, 0, 1\}.$

For each time step t, let $(q_t, ...) := (U_{\delta}^x)^t (q_0, 0)$. If $q_t \in Q_{acc}$, then M accepts a string w at a time step t.

SeungYeop Baik (Yonsei Univ.)

Configurations

Fix a TM $\mathcal{M} := (Q, \Gamma, b, \Sigma, \delta, q_0, F)$ and a tape x with length n. $C_n := Q \times \mathbb{Z}_n \Sigma_n$ is the set of *configurations* of M.

The *time-evolution operator* $U^x_{\delta} : C_n \to C_n$ of M on tape x is defined as:

 $U^x_{\delta}(q,k) := (p,\sigma,k+d),$

where $\delta(q, x(k)) := (p, \sigma, d) \in Q \times \Sigma \times \{-1, 0, 1\}.$

For each time step t, let $(q_t, ...) := (U_{\delta}^x)^t (q_0, 0)$. If $q_t \in Q_{\text{acc}}$, then M accepts a string w at a time step t.

Known Results

Known results:

- 1. DFA and 2DFA have the same power of expression (regular).
- Under constant error bound and *exponential* expected time constraints, 2PFA can express the non-regular language {aⁿbⁿ | n > 0}.
- 3. Under constant error bound and *polynomial* expected time constraints, 2PFA cannot express non-regular languages.

Theorem (Dwork89)

For any 2PFA recognizing a non-regular language with a constant error bound, the 2PFA must take exponential expected time with respect to the length of the input.

Overview

Introduction

Preliminary

Quantum versions of a Automata

Expressive powers of Quantum Automata

Computation complexity

Biased coin toss

Definition of Quantum Automata

2QFA: A 2-way quantum finite state automaton (2QFA) is a 6-tuple $(Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$, where

$$\delta: Q \times \Gamma \times Q \times \{-1, 0, 1\} \to \mathbb{C}.$$

1QFA: A 1-way quantum finite state automaton (1QFA) is a 2QFA $\mathcal{M} = (Q, \Sigma, \delta, q_0, Q_{acc}, Q_{rej})$ where

- 1. $\delta: Q \times \Gamma \times Q \times \{1\} \to \mathbb{C},$
- 2. $\delta(q,\sigma,q',1) = \langle q'|V_{\sigma}|q \rangle$, and

3.
$$\delta(q,\sigma,q',0)=\delta(q,\sigma,q',-1)=0.$$

Definition of Quantum Automata

QTM: A *quantum Turing machine (QTM)* is a 7-tuple $(Q, \Gamma, b, \Sigma, \delta, q_0, F)$, where

- $1. \ Q$ is a set of states on a Hilbert Space.
- 2. $\delta: (\Gamma \times Q) \times (\Sigma \times Q \times \{-1, 0, 1\}) \to \mathbb{C}$,
- 3. $q_0 \in Q$ is a pure or mixed state, and

Configurations of Quantum Automata

A superposition of M on x is a $|C_n|$ -dimensional quantum state.

- 1. \mathcal{H}_n denotes the set of all superpositions.
- 2. For each $c \in C_n$, $|c\rangle$ denotes the unit vector with value 1 at c.
- 3. For $|\psi\rangle = \sum_{c \in C_n} \alpha_c |c\rangle$, $\alpha_c \in \mathbb{C}$ is the *amplitude* of c in $|\psi\rangle$.

Transitions of 2QFA

$\delta: \underline{(Q\times\Gamma)}\times \underline{(Q\times\{-1,0,1\})}\to \mathbb{C}.$

For a tape x, the *time-evolution operator* $U^x_{\delta} : \mathcal{H}_n \to \mathcal{H}_n$ of M on tape x is defined as:

$$U^x_{\delta} | \boldsymbol{q}, \boldsymbol{k} \rangle := \sum \delta(\underline{\boldsymbol{q}, \boldsymbol{x}(\boldsymbol{k})}, \underline{\boldsymbol{q}', \boldsymbol{d}}) \cdot | \boldsymbol{q}', \boldsymbol{k} + \boldsymbol{d} \rangle,$$

and is extended to all $|\psi\rangle \in \mathcal{H}_n$ by linearity.

Note

- δ is restricted to U_{δ}^{x} be valid, that is, U_{δ}^{x} must be *unitary*.
- The configuration of M is in "superposition", we must "carefully observe" whether the configuration is accepting.

Transitions of a QTM

Configuration of QTM

Let \mathcal{H}_A be a Hilbert space containing A.

A configuration $(q, x, w) \in Q \times \mathbb{Z} \times \Sigma^{\mathbb{Z}}$ of Q is encoded into (infinite) qubits as $|q; x; w\rangle = |q\rangle \otimes |x\rangle \otimes |w\rangle \in \mathcal{H}_Q \oplus \mathcal{H}_{\mathbb{Z}} \oplus \mathcal{H}_{\Sigma^{\mathbb{Z}}}.$

Note that, even we describe a QTM configuration in infinite qubits, we only use a *finite* portion of them to compute *effectively*.

Observables

An observable \mathcal{O} is a decomposition $\{E_1, \ldots, E_k\}$ of the Hilbert space \mathcal{H}_n into subspaces, where

- $\blacktriangleright \mathcal{H}_n = E_1 \oplus E_2 \cdots \oplus E_k; \text{ and }$
- \blacktriangleright E_j are pairwise orthogonal.

Consider that we observe $|\psi\rangle \in \mathcal{H}_n$ with an observable $\mathcal{O} = \{E_1, \ldots, E_k\}$. Let $|\psi_j\rangle$ be the projection of $|\psi\rangle$ onto E_j . Then, after the observation,

- 1. We observe each outcome j with probability $||\psi_j\rangle||^2$.
- 2. The machine "collapse" to $\frac{1}{\||\psi_j\rangle\|}|\psi_j\rangle$.

Note

It is similar to conditional probabilities.

Observables (Examples)

- Let $|\psi\rangle = \frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$.
 - 1. Using observable $\{\langle|00\rangle\rangle,\langle|10\rangle\rangle,\langle|01\rangle\rangle,\langle|11\rangle\rangle\}$, with the same probability 0.25,
 - $|\psi\rangle$ collapses to $|00\rangle, |10\rangle, |01\rangle$, or $|11\rangle$.
 - 2. Using observable $\{\langle |00\rangle, |10\rangle\rangle, \langle |01\rangle, |11\rangle\rangle\}$, with the same probability 0.5,
 - $|\psi\rangle$ collapses to $\frac{\sqrt{2}}{2}(|00\rangle + |10\rangle)$; or
 - $|\psi\rangle$ collapses to $\frac{\sqrt{2}}{2}(|01\rangle + |11\rangle).$

Observable of 2QFA

For a 2QFA M and an input x, we use an observable $\mathcal{O}:=\{E_{\rm acc},E_{\rm rej},E_{\rm non}\}$, where

$$\blacktriangleright \ E_{non} := \langle C_{non} \rangle, \ C_{non} := Q_{non} \times \mathbb{Z}_n.$$

Introduction

Preliminary

Quantum versions of a Automata

Expressive powers of Quantum Automata

Computation complexity

Biased coin toss

SeungYeop Baik (Yonsei Univ.)

Computability of Quantum Devices

2QFA

A 2QFA can recognize a non-regular language $\{a^nb^n \mid n > 0\}$, and the non-context-free language $\{a^nb^nc^n \mid n > 0\}$.

Total-States and Computation of 1QFA

A *total-state* of an 1QFA M is $(\psi, p_{acc}, p_{rej}) \in \mathcal{V} := \ell_2(Q) \times \mathbb{R} \times \mathbb{R}$. Intuitively,

- 1. ψ denotes *unnormalized* superposition $|\psi\rangle$,
- 2. $p_{\rm acc}$ is the (accumulated) accepting probability, and
- 3. $p_{\rm rej}$ is the rejecting probability.

The intuition become clearer with the following operator T_{σ} .

$$\begin{split} T_{\sigma} &: (\psi, p_{\mathsf{acc}}, p_{\mathsf{rej}}) \\ &\mapsto (P_{\mathsf{non}} V_{\sigma} \psi, \|P_{\mathsf{acc}} V_{\sigma} \psi\|^2 + p_{\mathsf{acc}}, \|P_{\mathsf{rej}} V_{\sigma} \psi\|^2 + p_{\mathsf{rej}}), \end{split}$$

where $P_{\rm acc},~P_{\rm rej}$ and $P_{\rm non}$ are the projection matrices onto $\langle Q_{\rm acc}\rangle,~\langle Q_{\rm rej}\rangle$ and $\langle Q_{\rm non}\rangle.$

SeungYeop Baik (Yonsei Univ.)

Distance of Total-States

$$\begin{split} T_{\sigma} &: \mathcal{V} : (\psi, p_{\mathsf{acc}}, p_{\mathsf{rej}}) \\ &\mapsto (P_{\mathsf{non}} V_{\sigma} \psi, \|P_{\mathsf{acc}} V_{\sigma} \psi\|^2 + p_{\mathsf{acc}}, \|P_{\mathsf{rej}} V_{\sigma} \psi\|^2 + p_{\mathsf{rej}}), \end{split}$$

For two total-states $v=(\psi,p_{\rm acc},p_{\rm rej})$ and $v'=(\psi',p_{\rm acc}',p_{\rm rej}')$, we define a norm of v as:

$$\|v\| := \frac{1}{2}(\|\psi\| + |p_{\mathsf{acc}}| + |p_{\mathsf{rej}}|).$$

Then a *distance* between total-states v and v' is

$$d(v, v') := \|v - v'\|.$$

SeungYeop Baik (Yonsei Univ.)

Reachable Total-States

If $v = T_{\mathbf{c}w} | q_0, 0, 0 \rangle$ for some $w \in \Sigma^*$, we call v is *reachable* by w.

Let $\mathcal{B} := \{ v \in \mathcal{V} \mid ||v|| \le 1 \}.$ Clearly, any valid total-state v must be in \mathcal{B} .

Note that

- 1. T_x increases the distance at most linearly: $d(T_\sigma v, T_\sigma v') \leq c \cdot d(v, v')$,
- 2. $A \subset \mathcal{B}$ and $\exists \epsilon > 0, \forall v, v' \in A, d(v, v') > \epsilon$ implies A is finite.

QTM and quantum circuits

Remark

For a language L, the followings are equivalent:

- 1. There exists a poly-time QTM \mathcal{Q} for L.
- 2. There exists a uniform family of quantum circuits $\{Q_n\}_n$ and a poly-time DTM \mathcal{M} such that $\langle Q_n \rangle = \mathcal{M}(1^n)$ and $Q_{|\langle w \rangle|}(\langle w \rangle) = 1 (w \in L)$. Q_n may have poly(n) ancilla qubits initialized to $|0\rangle$.

Computation complexity

Overview

Introduction

Preliminary

Quantum versions of a Automata

Expressive powers of Quantum Automata

Computation complexity BQP Arthur-Merlin Complete problems

Biased coin toss

SeungYeop Baik (Yonsei Univ.)

Computability of Quantum Devices

Complexity hierarchy

C[k]: k machine activations; QIP has a slightly different definition: k messages passing.

Bounded quantum polynomial

BQP: The class BQP contains a language L which has a polynomial QTM Q with error bounded by $0 \le c < 0.5$. Formally, $\exists Q \exists c \forall w \ [c \in [0, 0.5) \land \Pr[Q(\langle w \rangle) \neq 1(w \in L)] \le c]$.

Bounded quantum polynomial

BQP: The class BQP contains a language L which has a polynomial QTM Q with error bounded by c = 1/3. Formally, $\exists Q \forall w \ [\Pr[Q(\langle w \rangle) \neq 1(w \in L)] \leq \frac{1}{3}].$

```
Implication of BQP
```

Let O be an oracle for a BQP language L; we can effectively decide $w \in L$ by querying O repeatedly.

- 1: given: input \boldsymbol{w} and iteration count \boldsymbol{i}
- 2: for $j \in [1,i]$ do
- 3: collect O(w)
- 4: end for
- 5: return majority

Implication of BQP

Let O be an oracle for a BQP language L; we can effectively decide $w \in L$ by querying O repeatedly.

_

i = 1	Т	F
P > N	$\geq 2/3$	$\geq 1/3$
P < N	$\leq 1/3$	$\leq 2/3$

Implication of BQP

Let O be an oracle for a BQP language L; we can effectively decide $w \in L$ by querying O repeatedly.

$$\begin{array}{c|c|c} i=n^1 & \mathsf{T} & \mathsf{F} \\ \hline P>N & \geq 1-\delta & \leq \delta \\ P$$

SeungYeop Baik (Yonsei Univ.)

Computability of Quantum Devices

 $^{^1}n \geq -48\log \delta$

Interactive proof system

Assume a statement is given and there are two people to prove this statement: prover (P) and verifier (V).

- ▶ P tries to convince V that the given statement is true.
- ► V checks P's proof with randomness.

The system accept/reject the statement by passing messages between the two.

It is important that P is unreliable; He may give a false proof.

Interactive proof system

 $\mathsf{P} \neq \mathsf{NP}, w \in L, \phi$ satisfiable, etc.

Assume a statement is given and there are two people to prove this statement: prover (P) and verifier (V).

- ▶ P tries to convince V that the given statement is true.
- ► V checks P's proof with randomness.

The system accept/reject the statement by passing messages between the two.

It is important that P is unreliable; He may give a false proof.

Arthur-Merlin Framework

Arthur-Merlin framework is another name of the interactive proof system, where we have two machines: Merlin (P) and Arthur (V) with the random coin tosses of Arthur must be revealed.

A language L is in the class Merlin-Arthur (MA) if, there exists a poly-time probabilistic machine (Arthur, V) such that,

- ▶ $\forall x \in L$, there exists a proof that makes V accept the statement with prob. at least 2/3.
- ▶ $\forall x \notin L$, for any proof, V accepts the statement with prob. at most 1/3.

QMA

The QMA class is similar to MA; but here, Arthur is a quantum device without randomness, and the proof is a quantum state (superposition) encoded in a poly-number of qubits.

Formally,

 $\mathbf{QMA}:$ A language L is in class QMA if there exists a poly-time quantum verifier V such that

- $\blacktriangleright \ \forall x \in L, \ \exists |\psi\rangle \ \Pr[V(|x\rangle, |\psi\rangle) = 1] \geq 2/3,$
- $\blacktriangleright \ \forall x \notin L, \, \forall |\psi\rangle \ \Pr[V(|x\rangle, |\psi\rangle) = 1] \leq 1/3,$

where $|\psi\rangle$ is encoded in poly(|x|) qubits.

Note that V is a BQP machine.

Analogy

BQP and QMA has similar relation to P and NP.

- Any language L in NP has a poly-time verifier V checking certificate.
- Any language L in QMA has a BQP verifier V checking certificate with high prob..

Recap: reduction

Oracle TM: A TM M with oracle O is a TM together with

- ▶ a dedicated tape for the oracle *O*,
- two dedicated states O_{start} and O_{end} .

The oracle O will read an input and write the output using the dedicated tape; in the view of TM M, this takes a single computation step.

Recap: reduction

Turing reduction: For two languages A and B, A Turing reduction from A to B is a TM M with B oracle that decides $w \in A$. If there exists a Turing reduction, A is B-computable.

Then, we can recognize A using *any* machine recognizing B.

Remark

If Turing reduction (from A to B) runs in polynomial time, it is Cook reduction.

BQP-hard: A language L is BQP-hard if every BQP language L' has a BPP (bounded probabilistic polynomial) TM with an oracle for L. (Assuming that BPP \neq BQP.)

Remark

There are no known BQP-complete problems yet.

Promise problem

Promise problem: A promise problem $P: \Sigma^* \to \{0, 1\}$ has two disjoint languages $L_1, L_0 \in \Sigma^*$, where

- ▶ P(w) = 1 when $w \in L_1$ and
- ▶ P(w) = 0 when $w \in L_0$.

The language $L = L_1 \cup L_0$ is the *promise* of P. Note that, for $w \notin L$, P(w) has no requirements.

Remark

A decision problem L is equivalent to a promise problem $(L, \Sigma^* \setminus L)$.

Promise problem

Deutsch-Jozsa: For given an oracle for a constant or balanced function function $f : \{0, 1\}^n \to \{0, 1\}$, determine if f is constant.

Promise problem

Problem (Canonical PromiseBQP problem)

Given a family $\{Q_n\}_n$ of poly-size uniform quantum circuits associated with two disjoint languages L_1 and L_0 , and an input $x \in L_1 \cup L_0$ with the *promise* that $Q_{|x|}(x)$ gives

- ▶ 1 with prob. at least 2/3 for all $x \in L_1$,
- ▶ 1 with prob. at most 1/3 for all $x \in L_0$,

determine that which case holds, i.e., determine that the probability of $Q_{|x|}(x) = 1$ is either above 2/3, or below 1/3.

Problem (Canonical PromiseBQP problem)

Given a family $\{Q_n\}_n$ of poly-size uniform quantum circuits associated with two difin decision version, there may be a circuit that does not satisfy this condition.] $Q_{|x|}(x)$ gives

- ▶ 1 with prob. at least 2/3 for all $x \in L_1$,
- ▶ 1 with prob. at most 1/3 for all $x \in L_0$,

determine that which case holds, i.e., determine that the probability of $Q_{|x|}(x) = 1$ is either above 2/3, or below 1/3.

Assume: an oracle O for the canonical problem. For a PromiseBQP problem (L_1, L_0) , \exists DTM M that generates a family $\{Q_n = M(1^n)\}_n$ of quantum circuits.

Then, we can solve (L_1, L_0) by the following algorithm.

- 1. Query O with input $\langle M, x \rangle$.
- 2. Return [Prob. is at least 2/3] iff O gives an output 1.

This is a (det. linear time, with the oracle O) reduction to the canonical problem.

Assume: an oracle O for the canonical problem. For a PromiseBQP problem (L_1, L_0) , $\exists DTM M$ that generates a family

 ${Q_n = M(1^n)}_n$ of quantum circuits.

Then, we can solve (L_1, L_0) by M fixed, copy x to oracle tape.

- 1. Query O with input $\langle M, x \rangle$
- 2. Return [Prob. is at least 2/3] iff O gives an output 1.

This is a (det. linear time, with the oracle O) reduction to the canonical problem.

QMA-complete

Problem (QCSAT)

(A quantum variant of classical circuit SAT problem) Given a quantum circuit Q, with n input qubits and m ancilla qubits with the *promise* that Q is either

- $\blacktriangleright \; \exists |\psi\rangle$ such that $Q(|\psi\rangle)$ accepts with prob. at least 2/3 or
- $\blacktriangleright~\forall |\psi\rangle,~Q(|\psi\rangle)$ accepts with prob. at most 1/3,

determine that which case holds.

Reduction is similar to that for the canonical BQP problem.

Complete problems

From [?] (BQP-c) and [?] (QMA-c) (This has several others), **BQP-complete**:

A sampling variant of k-local Hamiltonian: approximate distribution of k-local Hamiltonian's eigenvalues.

QMA-complete:

- Quantum circuit equivalence: Deciding whether two quantum circuits are equivalent
- ▶ *k*-local Hamiltonian: Find the smallest eigenvalue of *k*-local Hamiltonian.

Overview

Introduction

Preliminary

Quantum versions of a Automata

Expressive powers of Quantum Automata

Computation complexity

Biased coin toss

The biased coin toss problem

Biased Coin Toss: Given an infinite seq of coin tosses (HTHTT...) such that each toss is an independent event, investigate the ability of a finite automaton to distinguish fair coin, or biased $(p = \frac{1}{2} \pm \epsilon)$ coin

Backgrounds

- 1. What is a mixed state?
- 2. Extending unitary operation to a mixed state.
- 3. Distance between spaces?