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a 6/9
X~<b 2/9
c 1/9

‘ X =aorborc

- No surprise
‘ X=a

- Little surprise

‘ X=c
More surprise
-



Surprise

Natural properties of surprise
« Eventw/ prob. 1 = No surprise

« Rarer event = More surprise

* No jump in surprise
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Surprise

We say S: (0,1] - R, is a surprise function if it satisfies
« S(D)=0

« Sis (strictly) decreasing, i.e.,p < g = S(p) > S(q)

* S is continuous

 S(pg) =S(p) +S(q), i.e., for two independent instantiations, S is additive

Which function can be a surprise function? S(p) =—log,p

w/ normalization §(1/2) =1
i.e., we assume a fair coin flip gives a unit surprise

Any other possible function?



Surprise

Claim. —log, p is the only possible normalized surprise function.
proof)

« S@Y)=n-S(p)foranyn eN

S(p) =n-S(p/™) by substituting p™ to p
- S(p/™) = % - S(p) by rearranging the terms
. m/nY — .., . 1/ny M,
S(p )—m S(p )—n S(p) foranyn,m € N

c S(P%) =a-S(p)forany a € Q.
« S(p%) =a-S(p) forany a € R, since S is continuous
« With normalization S(1/2) = 1, we have S(27%) = a.

« Every p € (0,1] can be represented as 2% for some a € R,



Entropy

X: a discrete random variable over X with the probability mass function p(-).
The entropy of X is the expected surprise for X.

a 1/2
H(X) =— z p(x)log, p(x) = Ex.p[—log, p(X)] H(X)of X~{b 1/47?
XEX c 1/4

* a measure of the uncertainty of X
« a measure of the (expected) amount of information required to describe X

* Sometimes we use H(p) instead.
*0log0 =0
* If the base is e, we say “the entropy is measured in nats”.

* If not specified, the base is always 2.

Fact. H(X) = 0 (since surprise = 0)



Joint Entropy, Conditional Entropy

Joint Entropy

H(X, Y) - = z P(X;Y) logp(x;Y) — [E(X,Y)~p[_ logp(Xr Y)]
xeX,yEY

Conditional Entropy

HIYIX) = ) pOHYIX = )

XEX
= — z p(x) Z p(y|x) logp(y|x)
XEX YEY

= — z p(x,y)logp(ylx) = —Ex yy~pl—logp(Y|X)]
X€EX,YEY

*H(Y|X) =0ifand only if Y is a function of X.



Chain Rule

Theorem. H(X,Y) = H(X) + H(Y|X)

proof 1)
HXY) == ) p(xy)logp(x,y)

xeX,yEY

=— ) Py logpIp(y1o)
xeX,yEY

- _ z p(x,y)logp(x) — Z p(x,y) logp(y|x)
XEX,yEY x€X,y€Y

= — z p(x)logp(x) — z p(x,y)logp(y|x)
XEX XEX,yEY

= HX) + H({Y|X)



Chain Rule
Theorem. H(X,Y) = H(X) + H(Y|X)

proof 2)

Recall the entropy is the expected surprise.
logp(x,y) = logp(x) + logp(y|x)



Chain Rule
Theorem. H(X,Y) = H(X) + H(Y|X)

Corollary. HXX) —H(X|Y) =H(Y) — H(Y|X)



Relative Entropy or Kullback-Leibler Divergence

Relative entropy or Kullback-Leibler divergence(distance) between p and g

(x) (X)
D(p(x) I gq(x)) =D(p Il ) = z p(x) log% = Ex~p [log%

xXeX
« a measure of the inefficiency of assuming that the distribution of X~p is ¢

* Olog% =0, Ologg =0, plog% = (D(pllq)=wifaIxeX st plx)>0andqg(x)=0.)

*D( Il q) # D(q Il p), i.e., no symmetricity (in general)
*Dplilq)+D(@llr)ED(Ir),ie., notriangle inequality (in general)
*D(p Il g) = 0. Holds in equality if and only if p = q. (proof later)



Conditional Relative Entropy

Conditional relative entropy

- p(ylx) p(Y|X)
D(p(y|x) Il q(y|x)) = Z p(x) z p(ylx)log s = Ecunrp [logq(YlX)

XEX yEY

* (chainrule) D(p(x,¥) 1 q(x,y)) = D(p(x) Il g(x)) + D(p(y1x) Il q(y1x))



Mutual Information

Mutual information
 a measure of the amount of information that one RV contains about another RV

p(x,y)
p(x)p(y)

I(X;Y) = z p(x,y)log

XEX,yEY
=D(p(x,y) I PP (»))

=E lo pX.V)
— R~ 08, 0p(Y)




Entropy and Mutual Information

Mutual information
 a measure of the amount of information that one RV contains about another RV

p(x,y)
p(x)p(y)

I(X;Y) = z p(x,y)log

xeX,yeY

_ p(xly)
— xe;ey p(x, :V) log p(X)

= H(X) — H(X|Y) thereduction in the uncertainty of X
due to the knowledge of Y




Entropy and Mutual Information

Mutual information
 a measure of the amount of information that one RV contains about another RV

p(x,y)
p(x)p(y)

I(X;Y) = z p(x,y)log

xeX,yeY

3 p(ylx)
— xe;ey p(x, :V) log p(y)

= H(Y) — H(Y|X) thereduction in the uncertainty of Y
due to the knowledge of X




Entropy and Mutual Information

Mutual information
 a measure of the amount of information that one RV contains about another RV

1(X;Y) = p(x,v) log p(x,y)
xenyIEy p(x)p(y)
= H(X) — H(X|Y)
= H(Y) — H(Y|X)
— H(X) + H(Y) — H(X,Y)  (by chain rule)
— 1(Y; X)

*I1(X;X) = H(X) (Entropy is sometimes referred to as self-information)



Entropy and Mutual Information

H(X,Y)

H(X) H(Y)

FIGURE 2.2. Relationship between entropy and mutual information.



Chain Rule (collection of random variables)

Theorem.
H(Xl,Xz, ...,Xn) — H(Xl) + H(leXl) + H(X3|X2,X1) + + H(anXTL—I' ...,Xz,Xl)

H(Xll XZ; X3)

* Be careful! Venn diagram might mislead you!



Chain Rule (collection of random variables)

Theorem.
H(Xl,Xz, ...,Xn) — H(Xl) + H(leXl) + H(X3|X2,X1) + + H(anXn_l, ...,Xz,Xl)

H(Xll XZ; X3)

* Be careful! Venn diagram might mislead you!



Chain Rule (collection of random variables)

Theorem.
H(Xl,Xz, ...,Xn) — H(Xl) + H(leXl) + H(X3|X2,X1) + + H(anXTL—I' ...,Xz,Xl)

H(Xll XZ; X3)

* Be careful! Venn diagram might mislead you!



Chain Rule (collection of random variables)

Theorem.
H(Xl,Xz, ...,Xn) — H(Xl) + H(leXl) + H(X3|X2,X1) + + H(anXTL—I' ...,Xz,Xl)

H(Xll XZ; X3)

* Be careful! Venn diagram might mislead you!



Conditional Mutual Information

Conditional Mutual Information
I(X1;X2|X3) = H(X1|X3) — H(X1|X2,X3)

H(Xl' XZ) XS)

* Be careful! Venn diagram might mislead you!



Conditional Mutual Information

Conditional Mutual Information
I(X1;X2|X3) = H(X1|X3) — H(X1|X2,X3)

H(Xl' XZ) X3)

* Be careful! Venn diagram might mislead you!



Conditional Mutual Information

Conditional Mutual Information
I(X1;X2|X3) = H(X1|X3) — H(X1|X2,X3)

H(Xl' XZ) XS)

* Be careful! Venn diagram might mislead you!



Conditional Mutual Information

Conditional Mutual Information
I(X1JX2|X3) = H(X1|X3) — H(X1|X2,X3)

*(Cha|n rUIe) I(Xl,Xz, ...,Xn; Y) — I(Xl, Y) + I(Xz, Yle) + I(XB, Yle,Xl) + -4 I(Xn, YlXTL—l' ""XZIXl)

* Be careful! Venn diagram might mislead you!



MISLEADING Representation of Entropies

Claim. I(X;Y|Z) < I1(X;Y) holds by Venn diagram.
This claim is not always true! Then... s the claim always false?

Consider two independent fair coins X,Y. LetZ =X +Y.
We have
[(X:Y) =0
and,
[(X:Y|Z) =H(X|Z) - HX|Y,Z) = HX|Z) — 0.

When Z # 1, X is determined to one value, i.e., no surprise. Therefore
HX|Z)=Pr|Z=1HX|Z=1)=1/2
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Some Inequalities

Information Inequalities
Data-processing Inequalities
Fano’'s Inequalities



Information Inequality

Theorem. D(p Il g) = 0 with equality if and only if p = g.

q (X))
gp(X)_

—D(p Il q) = Ex-p [lo

(by Jensen'’s inequality) < log [EX~p [_
p(X).

=log Y q®
x€supp(p)

<log ) q()
x€esupp(q)
=logl1 =0
Trivial thatif p = g, then D(p Il q) = 0.
We show if D(p Il g) = 0, then p = q.

Since log is strictly concave,

= implies q(x)/p(x) = c for all x € supp(p)
for some constant c.

= implies supp(q) = supp(p), which implies ¢ = 1.



Information Inequality

Theorem. D(p Il g) = 0 with equality if and only if p = g.
Corollary. D(p(y|x) Il g(y|x)) = 0 with equality if and only if p(y|x) = q(y|x) for all x,y s.t. p(x) > 0.

Corollary. I(X;Y) = 0 with equality if and only if X and Y are independent.

Corollary. I(X;Y|Z) = 0 with equality if and only if X and Y are conditionally independent given Z.
Corollary. H(X|Y) < H(X), i.e., conditioning only reduces entropy.

proof ) I(X;Y) = H(X) — H(X|Y) = 0.

Theorem. H(X) < log|X'| with equality if and only if p is the uniform distribution.
proof) Let u(x) = 1/|X| be the uniform distribution.

D Il w) = Ex., [log

p(X)|
u(X)] = log|X|—H(X) =0



Convexity of Relative Entropy

distance btw averaged distribution < average of distance btw distributions
Theorem. D(Ap; + (1 —Dp, 1 Ag; + (1 —A)q,) <AD(p; Il q1) + (1 —A)D(p, Il g,) forall 1 € [0,1].

proof ) Fix any x € X. osl L
Let P, :== Ap1(x), P, == (1 — Dp(x), Q1 == Aq1(x), Q2 == (1 — A)Qz(x)-

>O) 0 []:5

Let f(x) = xlogx. Observe that f is (strictly) convex. (f"(x) = ——
P+ P, P; + P, Pi+ P
(P, + Py)lo =(Q1 + lo RN EER-
1+ Po)logg Sg, = (@t @) 0,70 0+ e,

P, + P,
= (Q1 + Q2)f PR+P, Q. P Q, P,
Qi +Q Q1+Q Q1 Q1 +Q; Q

Q1+ 0Q;

By Jensen’s inequality,

@ +Q)f<1+P2><Q f<P>+Q f<P> P, logL + P, log -2
<0, - 0g — 0
! ? Q1 + Q- ! Q1 ? Q- ! ng ? ng




Concavity of Entropy

entropy of averaged distribution = average of entropy of distributions
[Theorem. HAp; + (1 —A)p,) =2 AH(py) + (1 —A)H(p,) forall A € [0,1]}
proof )
Recall that

D(p Il w) =log|X| —H(p) or H(p) =log|X|—D(p Il u)
where u is the uniform distribution.
The theorem follows from the convexity of D.



Convexity/Concavity of Mutual Information
Let (X,Y)~p(x,y) = p(x)p(y|x). Write a(x) = p(x) and B(x,y) = p(y|x). Then (a, ) specifies p.

Theorem. (Mutual information concave in a) A - I(X; Y1) + (1 —A) - [(X,; Y5) < 1(X3;Y3)
where (X1, Y1) ~(aq, B), (X3, Y2)~(az, f) and (X3, Y3)~(Aa; + (1 — Day, f).
proof )
Let B, be the biased coin which takes 1 w/ prob. A and O w/ prob. 1 — A.
Let X be the RV whose distribution is a; if By = 1, o/w, a5.
Let Y be the RV conditioned on X with distribution £.
[(X3;Y3) = 1(By, X;Y)
=1(By;Y)+1(X;Y|By) (bychainrule)
> 1(X;Y|By) (by information inequality)
=2-1(X;Y|B,=1)+ 1 —=2)-I(X;Y|B;, = 0)
=A-1(X; Y1) + (1 —2) - [(X; 1)



Convexity/Concavity of Mutual Information
Let (X,Y)~p(x,y) = p(x)p(y|x). Write a(x) = p(x) and B(x,y) = p(y|x). Then (a, ) specifies p.

Theorem. (Mutual information convexin f)A-1(X; V) + (1 —24) - 1(X,;Y,) = 1(X3;Y3)
where (X1, Y1)~(a, B1), (X3, Y2)~(a, B2) and (X3, Y3)~(a, 4B, + (1 — 1)f).
proof)
Let B, be the biased coin which takes 1 w/ prob. A and O w/ prob. 1 — A.
Let X be the RV whose distribution is a. (Independent from B;.)
Let Y be the RV conditioned on X with distribution g, if B, = 1, o/w, £,.
I(By,Y;X) =1(Y;X) + I(By; X|Y) (by chain rule)
>1(Y;X) =1(X3;Y3) (by information inequality)
I(By,Y;X) =1(By; X) + I(Y;X|By) = 0+ I(Y; X|By)
=2-1(Y;X|B,=1)+@—=2)-I(Y;X|B; = 0)
=2A-1(X; Y1) + (1 —2) - [(X; 1)



Data-processing Inequality

We say random variables X, Y, Z form a Markov chain X - Y - Z if p(x,y,z) = p(x)p(y|x)p(z|y).
*X ->Y - Zifand only if X and Z are conditionally independent given Y.

*X->Y->ZimpliesZ -Y - X.

[Theorem. fX->Y->Z thenI(X;Y) = I1(X;2). ]
proof)

I(XY,2) =1 +I1XZ|)Y) =1X;2) + [(X;Y]2)
Since X and Z are conditionally independent given Y, I(X;Z|Y) = 0.

[Corollary. fX ->Y > Z thenI(X;Y) = I(X; Y|Z).]
* Holds with equality if and only if I(X;Z) = 0, i.e., X and Z are independent.

[Corollary. fX->Y > Z then HX|Y) < HX|Z). ]




Fano’s Inequality

Given Y, we wish to guess the value of X.
- If we can estimate X with O probability of error, then H(X|Y) = 0, i.e., no uncertainty.
- If we can estimate X with “low” probability of error, then H(X|Y) is “small”.

No assumption X = X

Let X = g(¥) be the estimate of X and takes on values in X.
g can be random

~

Theorem. For any estimator X s.t. X - Y —» X, we have
H(P,) + P, log|X| = H(X|X) = H(X|Y)

where P, = Pr|X # X| is the probability of error.
\ , = Pr| ] p y P

Weaker statement.
Why H(P,) < 17 H(X|Y) —1
1+ P log|X|=HX|Y) & P, > loglX]




Fano’s Inequality
-

Theorem. For any estimator X s.t. X - Y - X, we have
H(P,) + P, log|X| = H(X|X) = H(X|Y)

~

data-processing inequality
IfX ->Y - Z, then HX|Y) < H(X|Z)

\Where P, = Pr[X # X] is the probability of error. P

proof of first inequality )
Let E = 1| X # X| be the binary RV.
H(E, X|X) = H(X|X) + H(E|X,X) = H(X|X)
= H(E|X) + H(X|E,X) < H(P,) + P,log|X]|
- H(E|X,X)=0
» H(E|X) < H(E) = H(P,) unconditioning increases entropy
- H(X|E,X) =Pr[E =1]H(X|E =1,X) < P, - H(X) < P, log|X]|.

uniform distribution maximizes entropy

* The first inequality holds without the condition X - Y — X.



Fano’s Inequality

Theorem. For any estimator X s.t. X > Y - X and X = X, we have
H(P,) + P, log(|X| — 1) = H(X|X) = H(X|Y)

where P, = Pr|X # X| is the probability of error.

Weaker statement.

H(X|Y) — 1
P, >
log(]X] — 1)




Fano’s Inequality

Remark. Fano’s inequality s sharp.

Suppose no knowledge of Y, i.e., guess X without any information.

Let our (deterministic) estimator be x* where p(x*) = max p(x).
X
Fano’s inequality says
H(P,) + P, log(|X| — 1) = H(X).
If p(-) restricted to X'\{x*} were a uniform distribution, i.e., p(x) =

this holds with equality.

1-p(x™)
|X

|—1

for all x # x*,



More Inequalities Related to Probability of Error and Entropy

Lemma. If X and X' are independent identically distributed,
PriX = X'] = 27H®)
with equality if and only if X has a uniform distribution.

proof ) Note that 2* is (strictly) convex.
By Jensen’s inequality,

2-HX) = 2Ellogp(0] < [[2logr(M)] = E[p(X)] = Z p2(x) = Pr[X = X'].
XEX

Corollary. If X~p and X'~q are independent and X = X",
Pr[X = X'] = 2~ H®)-D(@l9)
Pr[X = X'] = 2~H(@)-D(qlp)
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AEP

Asymptotic Equipartition Property
Typical Set
Simple Data Compression



Weak Law of Large Numbers

Let Z,,Z,, ..., Z,, be a sequence of i.i.d RVs with mean u and variance 2.

LetZ, = % * . Z; be the sample mean.

Weak law of large numbers.

0.2

Pr{|Z, —u|l > €|l < —
t|Z, ~ ul > €] < —

or
Pr[|Z, —u| >€] >0 as n—> o

proof )
Note E[Z,,] = u and Var(Z,,) = ¢?/n. (Each Z; has variance g% /n?.)
Apply Chebyshev’s inequality.



AEP (Asymptotic Equipartition Property)

Consider a sequence of i.i.d RVs X, X,, ..., X,.

AEP
1
_ Elog p(X1, X5, ..., X)) = H(X) in probability



AEP (Asymptotic Equipartition Property)

Consider a sequence of i.i.d RVs X, X,, ..., X,.
Consider a sequence of RVs Z,,Z,, ..., Z, (also i.i.d.) such that Z; .= —logp(X;) foralli =1, ..., n.

Let 7, =% n 7, = —% " logp(X,). Note that E[Z,] = H(X).

AEP
Z, = H(X) in probability



AEP (Asymptotic Equipartition Property)

AEP (more formally). For any € > 0, there exists n, such that for all n = n,,

Pr(|Z,—HX)| >€] <€
or equivalently,
Pr[|Z, —H(X)|>€] >0 as n— o
proof)
Direct application of weak law of large numbers gives the following:

2

— o)
Pr(|Z, —H(X)| > €| <—
r[l n ( )l E] nEZ

where ¢ is the variance of Z;.

2
o
Let ny = = Then for all n = n,,




AEP (Asymptotic Equipartition Property)
AEP. For any € > 0, for all sufficiently large n,

1
Pr[ —Elogp(Xl,Xz, v, Xp) — H(X)‘ > E] <e€

11
Pr ‘Elogp(Xl,Xz, o, Xp) + H(X)‘ > E] <e€

ol

1
Pr [—E < Elogp(Xl,Xz, X)) FHX) < E] >1—¢€

1
Elogp(Xl,Xz,...,Xn) +H(X)‘ < E] >1—¢€




AEP (Asymptotic Equipartition Property)
AEP. For any € > 0, for all sufficiently large n,

1
Pr [—E < Elogp(Xl,Xz, X)) FHX) < E] >1—¢€
1
Pr [—H(X) —€< Elogp(Xl,Xz, o Xp) < —HX) + E] >1—¢€
Pr[-n(H(X) +¢€) <logp(X, X5, ..., X)) < n(HX)—¢€)]=1—¢€
Pr2 nHI*E) < p(Xy, Xy, ., Xp) < 27MHEO-O] > 1 — ¢

“Almost all events are almost equally surprising”.



Typical Set

The typical set Ag") w.r.t. p is the set of sequence x = (x4, x5, ..., X,;) € X™ such that
2—n(H(X)+e) < p(X) < Z—n(H(X)—e)_

Trivially, Pr[X € 47| 2 1 — .
Theorem. (1 — ¢)2nHX)—€) < ‘Ag")| < 2nHX)+€) for sufficiently large n.

proof)

A%V

(upper bound) 1 = z p(x) = z p(x) > 2-n(H(X)+e€)
XEXTM xEAgn)

)p(X) < 2—n(HX)—€) Agn)

(lowerbound) 1 — e < Z

XEAgn



Consequence of AEP: Data Compression

Find a short description (i.e., binary string representation) for sequences of i.i.d RVs X;, X5, ..., X,,.
Algorithm.

1. Divide sequences in X™ into A™ and A™\x™.

2. Index all x € Ag") using [n(H(X) + €)] + 1 bits with most significant bit set to O.
3. Index all x ¢ Ag") using [nlog|X|] + 1 bits with most significant bit set to 1.

Expected length ¢ of the codeword
erxnﬂxw (x) = ZXEAgw pX)(nHX) +e)]+1) + zm w p(x)([nlog|X|] + 1)

< (n(H(X) + ) +2) Pr[X € A% + (nloglx| +2) Pr[X & A7

<n(H(X) +€) + enlog|X| + 2

= n<H(X) + € + elog| X | +%> =n(HX) + €')



High Probability and Small Set

A™ has size ~ 2"H® pyt contains most of the probability.
Is there much smaller set with most of the probability?

For each n, let Bé") C X" be a smallest set with Pr [X € B(g")] >1-9.

Observe Pr|X € A7 nB{®| 21— Pr[x ¢ A7| - Pr|x g B{"| 21— € - 5.
Moreover,
Pr [X e A%V n Bé”)] <
x € AT = p(x) < 27 HX-)
By rearranging, we obtain

Ag") N B(gn)‘ 2—n(H(X)—€) < ‘Bén)‘ > —n(H(X)—€)

‘B(g")‘ >(1—€— 5)2n(H(X)—6) ~ PNHX)



AT vs B

Suppose we have a biased coin X with probability 0.6.

H(X) =—0.6log0.6 — 0.41l0og 0.4 ~ 0.97
Consider when n = 25 and € = 0.1.

Recall A(n) {x eXn | HX)—e< ——logp(x) < H(X) + e}
A% = {x € X25 ‘ 0.87 < ——logp(x) < 1. 07}



AT vs B

1
A% = {x € X25 ‘ 0.87 < —-logp(x) < 1.07}
For x with #1=0, —%logp(x) = —%log 0.4%° = —log 0.4 ~ 1.32

For x with #1=1, —%logp(x) = —%log 0.4%40.6 ~ 1.29

For x with #1=10, —%logp(x) = —%log 0.41°0.61° ~ 1.08

For x with #1=11, — ~logp(x) = — —1og 0.41%0.6'1 ~ 1.06

For x with #1=19, —%logp(x) = —%log 0.4°0.6'° ~ 0.88

For x with #1=20, — —logp(x) = —%log 0.450.62° ~ 0.85



A(n) (n)

vsB

Suppose we have a biased coin X with probability 0.6.

H(X) =—0.6log0.6 — 0.41l0og 0.4 ~ 0.97
Consider when n = 25 and € = 0.1.

Recall AT” = {x € X" | H(X) — e < —~logp(x) < H(X) + € }
AP = {xeX?5 |11 < #1inx < 19}
Recall Bé") is a smallest set with Pr [X € Bé")] >1-9.

To find Bé_zf), keep selecting x € X™ with highest prob. until we reach a total probability of 0.9.



AT vs B

Bé_zls) is a smallest set with Pr [X € Bé_zls)] > 0.9.

- Select x with #1=25 / cumulative total probability 0.62> ~ 0.000003
- Select x with #1=24 / cumulative total probability =~ 0.000003 4+ 0.000047 = 0.00005

- Select x with #1=13 / cumulative total probability = 0.846
- Select x with #1=12 / cumulative total probability = 0.922



AT vs B

Suppose we have a biased coin X with probability 0.6.

H(X) =—0.6log0.6 — 0.41l0og 0.4 ~ 0.97
Consider when n = 25 and € = 0.1.

Recall AT” = {x € X" | H(X) — e < —~logp(x) < H(X) + € }
A% = {xe X% |11 < #1inx < 19)
Recall B is a smallest set with Pr [X € B(")] >1-34.
(xe X% | #1inx>13} c B ¢ {x € X?5 | #1inx > 12}
Pr|X € A7) n B | ~ 0.87

Remark. The bound (1 — €)2nH&)-€) < ‘Agn)‘ < 2nH(X)+€) is (very) loose.

47| = 26,366,510
lower bound = 3,742,308 and upper bound = 114,438,718.



Cover and Thomas, Elements of Information Theory (29 edition), Chapter 4

Entropy Rate

Entropy of RVs from a stationary process
Markov chain



Stochastic Process

Stochastic process {X;}: an indexed sequence of RVs with arbitrary dependence

Stationary stochastic process: joint distribution of any subset is invariant w.r.t. shifts in index
Pr[(XLXZ' an) — (Xl,XZ, ""xn)] — Pr[(X1+€'X2+€' ---'Xn+£) — (x1»x21 v xn)]



Entropy Rate

Definition 1 (entropy per symbol).
1
H(X) = lim —H(X{, X5, ..., X,,) when the limit exists

n-oon
Definition 2 (conditional entropy of the last).

H'(X) = T%l_t)l.}o H(X, | X;,_1,X5—2, ..., X1) when the limit exists

[Theorem. For a stationary stochastic process, H(X) = H'(X ).]

proof )
Observe H(X,, | X;,_1,X—2, ..., X1) only decreases when n increases. (Since H > 0, limit exists)
H(Xn | Xn—ern—Z» ---:X1) - H(Xn+1 | Xn»Xn—l» ---;XZ) = H(Xn+1 | Xn»Xn—lr ---»XZJXl)

stationarity conditioning property

By Cesaro mean, lim H(Xy | Xp_1, Xn—2, ., X1) = T%i_r)go%Z?le(Xilxi_l, o X,
By chainrule, H(Xy, X5, .., Xp) = Xie HX 1 Xi—1, o X1).



General AEP

AEP
For any i.i.d. process, in probability,

1
— Elog p(Xq, ..., X,) = H(X)

General AEP
For any stationary ergodic process, with probability 1,

1
— Elog p(Xq, ..., X,) = H(X)



Markov Chain

Markov chain (or process). dependence only on the one just before it
PI'[Xn+1 = Xn+1 | (X1'X2' ...,Xn) — (Xl,XZ, ...,Xn)] — PI'[Xn+1 = Xn+1 | Xn - xn]
* Here we assume Markov chain is time invariant, i.e.,
Pr[X,;;=b|X,=a]=Pr[X,=b|X; =a]

Fundamental Theorem of Markov Chain.

A finite, irreducible and aperiodic Markov chain

- has the unique stationary distribution and

- any distribution converges to the stationary distribution.

Stationary distribution: p = u’P
Irreducible: Transition graph P is strongly connected component.
Aperiodic: GCD(all closed directed walk from v to v w/ prob.>0)=1.



Stationary Markov Chain

With initial dist. as stationary dist. i, Markov chain is a stationary process.

H(X) =H'(X) = AI_ETC}O HX, | X1, Xnoz) o X1) = 111_1){310 H(X, | Xn_q) = H(X; | X7)

Markovity stationarity

We have

HOO = HOG 1 X)) = ) p(DHGIX, = D

ij
= —Zﬂ(i)zpij log P;;
L J

= — z u(i)P;jlog P;;
L,j



Functions of Markov Chain

Let {X;} be a stationary Markov chain.
Consider {Y;} where Y; = ¢(X;).
Note {Y;} does not necessarily form a Markov chain.

Consider a Markov chain with P,, = P., = Py, = 1.
Observe the uniform distribution is a stationary distribution.

Now consider a function ¢ such that ¢(a) = ¢(b) = s and ¢(c) = t.

1
Pr[Y3=s|Y2=5]=E

Prl[Y;=5|Y,=5Y, =5s]=1



Functions of Markov Chain

Let {X;} be a stationary Markov chain.

Consider {Y;} where Y; = ¢(X;).

Note {Y;} does not necessarily form a Markov chain.

Therefore, to compute H(Y), need to compute H(Y,, | Y;,_1, Y5, ..., ¥7).
How to know H(Y,, | Y,,_1, Y, >, ..., Y1) = H(Y) for any n?

Recall that it converges from above.
o 2 HVy | Yooy, Yz, o, Y1) 2 H(Vpiq | Y, Yyog, o, Y1) = o = H(Y)
Lemma. H(Y) > H(Y, | Y,,_1, Y _», ..., Y1, X1).
HYp 1 Yo, Yo, o, Y, X0) SH(Y) S HY | Yoy, Yoo, o 1)

Theorem.
llm H(Yn | Yn—l» YTL—Z' ver ) Yl'Xl) — H(y) — AI_I)TOIO H(Yn | Yn—l» YTL—Z' . Yl)

n—0oo

If ¢ is random, this is related to a hidden Markov chain (HMM)



Thank You
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