Information Theory "Phase Zero"

Changyeol Lee (Yonsei University)

Cover and Thomas, Elements of Information Theory (2nd edition), Chapter 2

Entropy and Information

Entropy / Conditional Entropy
Relative Entropy / Conditional Relative Entropy
Mutual Information / Conditional Mutual Information
Chain Rules

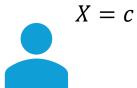
$$X \sim \begin{cases} a & 6/9 \\ b & 2/9 \\ c & 1/9 \end{cases}$$

$$X = a \text{ or } b \text{ or } c$$

No surprise

$$X = a$$

Little surprise



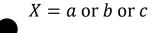
More *surprise*

Natural properties of surprise

- Event w/ prob. 1 = No surprise
- Rarer event = More surprise
- No jump in surprise

$$X \sim \begin{cases} a & 6/9 \\ b & 2/9 \\ c & 1/9 \end{cases}$$

$$X' \sim \begin{cases} a & 6/9 + \epsilon \\ b & 2/9 \\ c & 1/9 - \epsilon \end{cases}$$



No surprise

Little surprise

More surprise

We say $S:(0,1] \to \mathbb{R}_{\geq 0}$ is a *surprise function* if it satisfies

- S(1) = 0
- S is (strictly) decreasing, i.e., $p < q \Rightarrow S(p) > S(q)$
- S is continuous
- S(pq) = S(p) + S(q), i.e., for two independent instantiations, S is additive

Which function can be a surprise function? $S(p) = -\log_2 p$

w/ normalization S(1/2) = 1 i.e., we assume a fair coin flip gives a unit surprise

Any other possible function?

Claim. $-\log_2 p$ is the only possible normalized surprise function. proof)

- $S(p^n) = n \cdot S(p)$ for any $n \in \mathbb{N}$
- $S(p) = n \cdot S(p^{1/n})$ by substituting p^n to p
- $S(p^{1/n}) = \frac{1}{n} \cdot S(p)$ by rearranging the terms
- $S(p^{m/n}) = m \cdot S(p^{1/n}) = \frac{m}{n} \cdot S(p)$ for any $n, m \in \mathbb{N}$
- $S(p^{\alpha}) = \alpha \cdot S(p)$ for any $\alpha \in \mathbb{Q}_{\geq 0}$.
- $S(p^{\alpha}) = \alpha \cdot S(p)$ for any $\alpha \in \mathbb{R}_{\geq 0}$ since S is continuous
- With normalization S(1/2) = 1, we have $S(2^{-\alpha}) = \alpha$.
- Every $p \in (0,1]$ can be represented as $2^{-\alpha}$ for some $\alpha \in \mathbb{R}_{\geq 0}$

Entropy

X: a discrete random variable over X with the probability mass function $p(\cdot)$. The *entropy* of X is the expected surprise for X.

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x) = \mathbb{E}_{X \sim p} [-\log_2 p(X)] \qquad H(X) \text{ of } X \sim \begin{cases} a & 1/2 \\ b & 1/4 \end{cases}$$

- a measure of the uncertainty of X
- a measure of the (expected) amount of information required to describe X
- * Sometimes we use H(p) instead.
- * $0 \log 0 = 0$
- * If the base is e, we say "the entropy is measured in nats".
- * If not specified, the base is always 2.

Fact. $H(X) \ge 0$ (since surprise ≥ 0)

Joint Entropy, Conditional Entropy

Joint Entropy

$$H(X,Y) = -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log p(x,y) = \mathbb{E}_{(X,Y) \sim p} [-\log p(X,Y)]$$

Conditional Entropy

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$$

$$= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log p(y|x) = -\mathbb{E}_{(X,Y) \sim p}[-\log p(Y|X)]$$

^{*} H(Y|X) = 0 if and only if Y is a function of X.

Chain Rule

Theorem. H(X,Y) = H(X) + H(Y|X)

proof 1)

$$H(X,Y) = -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

$$= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log p(x) p(y|x)$$

$$= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log p(x) - \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \log p(x) - \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log p(y|x)$$

$$= H(X) + H(Y|X)$$

Chain Rule

Theorem. H(X,Y) = H(X) + H(Y|X)

proof 2)

Recall the entropy is the expected surprise.

$$\log p(x, y) = \log p(x) + \log p(y|x)$$

Chain Rule

Theorem. H(X,Y) = H(X) + H(Y|X)

Corollary. H(X) - H(X|Y) = H(Y) - H(Y|X)

Relative Entropy or Kullback-Leibler Divergence

Relative entropy or Kullback-Leibler divergence (distance) between p and q

$$D(p(x) \parallel q(x)) = D(p \parallel q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right]$$

• a measure of the inefficiency of assuming that the distribution of $X \sim p$ is q

*
$$0\log\frac{0}{0} = 0$$
, $0\log\frac{0}{q} = 0$, $p\log\frac{p}{0} = \infty$ ($D(p \| q) = \infty$ if $\exists x \in \mathcal{X}$ s.t. $p(x) > 0$ and $q(x) = 0$.)

- * $D(p \parallel q) \neq D(q \parallel p)$, i.e., no symmetricity (in general)
- * $D(p \parallel q) + D(q \parallel r) \ge D(p \parallel r)$, i.e., no triangle inequality (in general)
- * $D(p \parallel q) \ge 0$. Holds in equality if and only if p = q. (proof later)

Conditional Relative Entropy

Conditional relative entropy

$$D(p(y|x) \parallel q(y|x)) = \sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log \frac{p(y|x)}{q(y|x)} = \mathbb{E}_{(X,Y) \sim p} \left[\log \frac{p(Y|X)}{q(Y|X)} \right]$$

* (chain rule) $D(p(x,y) \| q(x,y)) = D(p(x) \| q(x)) + D(p(y|x) \| q(y|x))$

Mutual Information

Mutual information

a measure of the amount of information that one RV contains about another RV

$$I(X;Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$= D(p(x,y) \parallel p(x)p(y))$$
$$= \mathbb{E}_{(X,Y) \sim p} \left[\log \frac{p(X,Y)}{p(X)p(Y)} \right]$$

Mutual information

a measure of the amount of information that one RV contains about another RV

$$I(X;Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{p(x|y)}{p(x)}$$

$$= H(X) - H(X|Y) \quad \text{the reduction in the uncertainty of } X \text{ due to the knowledge of } Y$$

Mutual information

a measure of the amount of information that one RV contains about another RV

$$I(X;Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{p(y|x)}{p(y)}$$

$$= H(Y) - H(Y|X) \quad \text{the reduction in the uncertainty of } Y \text{ due to the knowledge of } X$$

Mutual information

a measure of the amount of information that one RV contains about another RV

$$I(X;Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

$$= H(X) + H(Y) - H(X,Y) \quad \text{(by chain rule)}$$

$$= I(Y;X)$$

* I(X;X) = H(X) (Entropy is sometimes referred to as self-information)

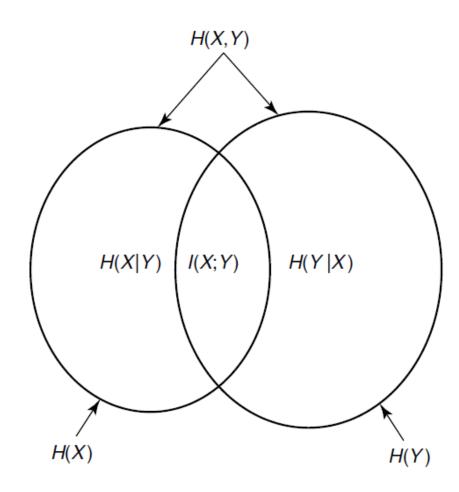
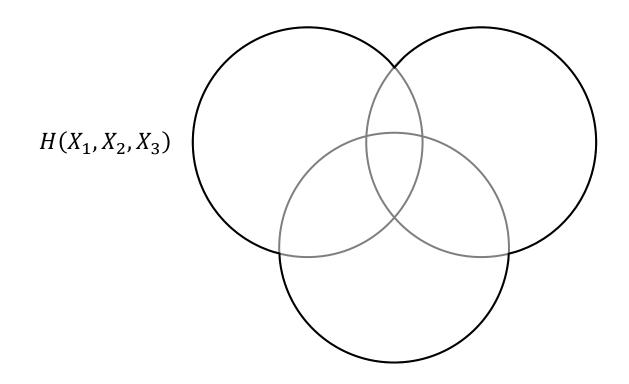


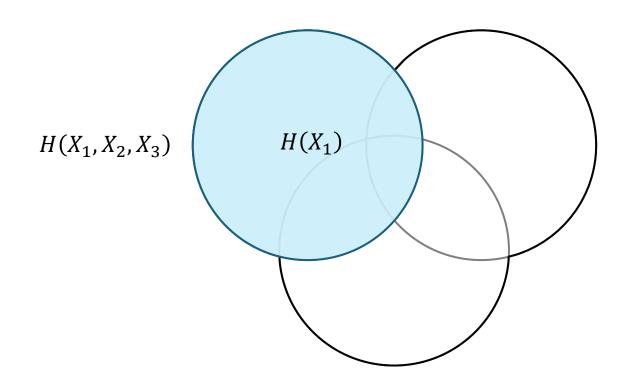
FIGURE 2.2. Relationship between entropy and mutual information.

$$H(X_1,X_2,\dots,X_n) = H(X_1) + H(X_2|X_1) + H(X_3|X_2,X_1) + \dots + H(X_n|X_{n-1},\dots,X_2,X_1)$$



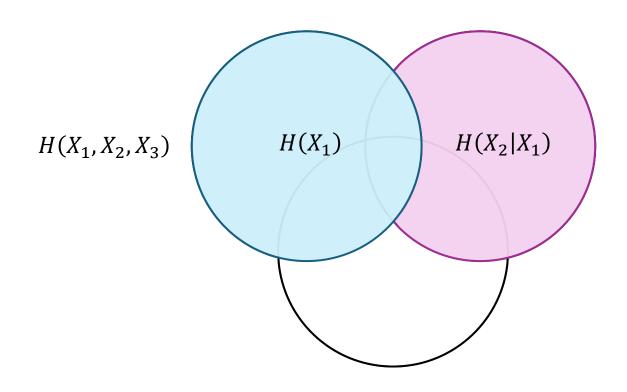
^{*} Be careful! Venn diagram might mislead you!

$$H(X_1, X_2, ..., X_n) = H(X_1) + H(X_2|X_1) + H(X_3|X_2, X_1) + ... + H(X_n|X_{n-1}, ..., X_2, X_1)$$



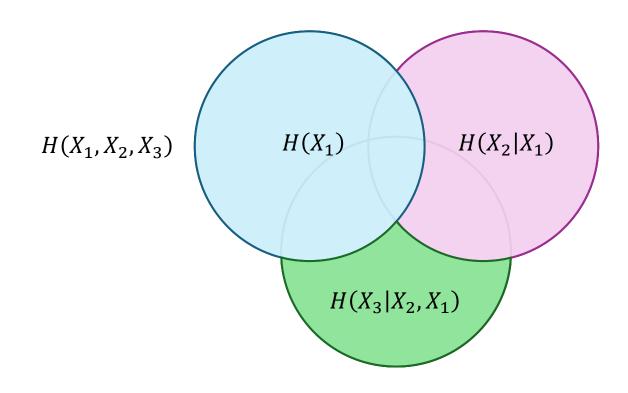
^{*} Be careful! Venn diagram might mislead you!

$$H(X_1, X_2, ..., X_n) = H(X_1) + H(X_2|X_1) + H(X_3|X_2, X_1) + ... + H(X_n|X_{n-1}, ..., X_2, X_1)$$



^{*} Be careful! Venn diagram might mislead you!

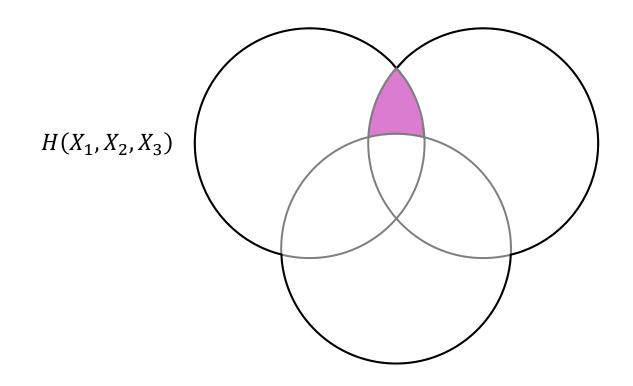
$$H(X_1, X_2, ..., X_n) = H(X_1) + H(X_2|X_1) + H(X_3|X_2, X_1) + ... + H(X_n|X_{n-1}, ..., X_2, X_1)$$



^{*} Be careful! Venn diagram might mislead you!

Conditional Mutual Information

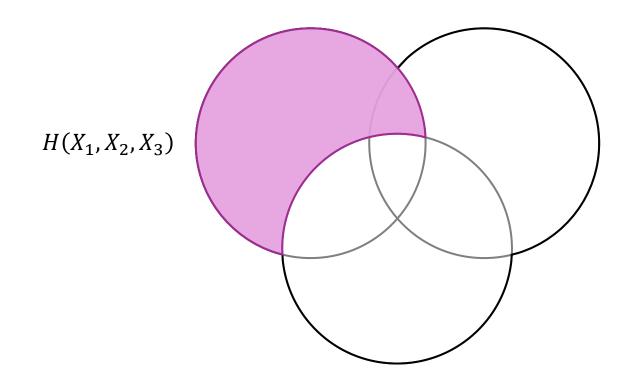
$$I(X_1; X_2 | X_3) = H(X_1 | X_3) - H(X_1 | X_2, X_3)$$



^{*} Be careful! Venn diagram might mislead you!

Conditional Mutual Information

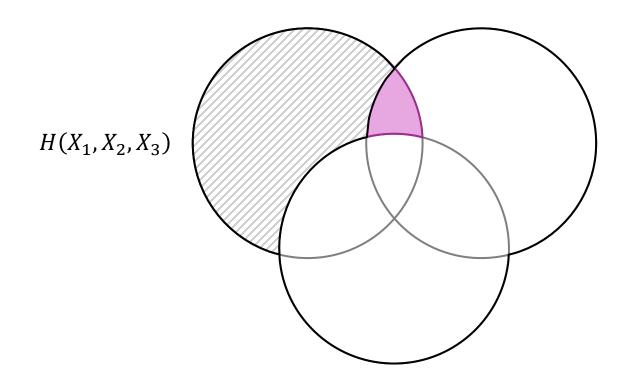
$$I(X_1; X_2 | X_3) = H(X_1 | X_3) - H(X_1 | X_2, X_3)$$



^{*} Be careful! Venn diagram might mislead you!

Conditional Mutual Information

$$I(X_1; X_2 | X_3) = H(X_1 | X_3) - H(X_1 | X_2, X_3)$$



^{*} Be careful! Venn diagram might mislead you!

Conditional Mutual Information

$$I(X_1; X_2 | X_3) = H(X_1 | X_3) - H(X_1 | X_2, X_3)$$

*(chain rule) $I(X_1, X_2, ..., X_n; Y) = I(X_1; Y) + I(X_2; Y|X_1) + I(X_3; Y|X_2, X_1) + ... + I(X_n; Y|X_{n-1}, ..., X_2, X_1)$

^{*} Be careful! Venn diagram might mislead you!

MISLEADING Representation of Entropies

Claim. $I(X; Y|Z) \leq I(X; Y)$ holds by Venn diagram.

This claim is not always true! Then... is the claim always false?

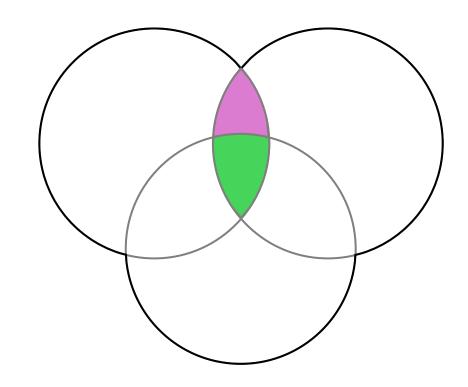
Consider two independent fair coins X, Y. Let Z = X + Y.

We have

$$I(X;Y)=0$$

and,

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z) = H(X|Z) - 0.$$



When $Z \neq 1$, X is determined to one value, i.e., no surprise. Therefore

$$H(X|Z) = \Pr[Z = 1] H(X|Z = 1) = 1/2$$

Cover and Thomas, Elements of Information Theory (2nd edition), Chapter 2

Some Inequalities

Information Inequalities

Data-processing Inequalities

Fano's Inequalities

Information Inequality

Theorem. $D(p \parallel q) \geq 0$ with equality if and only if p = q.

$$-D(p \parallel q) = \mathbb{E}_{X \sim p} \left[\log \frac{q(X)}{p(X)} \right]$$

(by Jensen's inequality)
$$\leq \log \mathbb{E}_{X \sim p} \left[\frac{q(X)}{p(X)} \right]$$

Since log is strictly concave,

 $\leq \log \mathbb{E}_{X \sim p} \left| \frac{q(X)}{p(X)} \right|$ Since $\log \operatorname{Is strictly concave}$, $= \operatorname{implies} q(x)/p(x) = c \text{ for all } x \in \operatorname{supp}(p)$

for some constant c.

$$= \log \sum_{x \in \text{supp}(p)} q(x)$$

 $\leq \log \sum_{i=1}^{n} q(x) = \text{implies supp}(q) = \text{supp}(p), \text{ which implies } c = 1.$ $x \in \text{supp}(a)$

 $= \log 1 = 0$

Trivial that if p = q, then $D(p \parallel q) = 0$.

We show if $D(p \parallel q) = 0$, then p = q.

Information Inequality

Theorem. $D(p \parallel q) \ge 0$ with equality if and only if p = q.

Corollary. $D(p(y|x) || q(y|x)) \ge 0$ with equality if and only if p(y|x) = q(y|x) for all x, y s.t. p(x) > 0.

Corollary. $I(X;Y) \ge 0$ with equality if and only if X and Y are independent.

Corollary. $I(X;Y|Z) \ge 0$ with equality if and only if X and Y are conditionally independent given Z.

Corollary. $H(X|Y) \leq H(X)$, i.e., conditioning only reduces entropy.

proof) I(X;Y) = H(X) - H(X|Y) ≥ 0.

Theorem. $H(X) \le \log |\mathcal{X}|$ with equality if and only if p is the uniform distribution. proof) Let $u(x) = 1/|\mathcal{X}|$ be the uniform distribution.

$$D(p \parallel u) = \mathbb{E}_{X \sim p} \left[\log \frac{p(X)}{u(X)} \right] = \log |\mathcal{X}| - H(X) \ge 0$$

Convexity of Relative Entropy

distance btw averaged distribution ≤ average of distance btw distributions

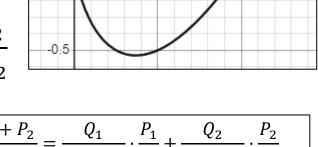
Theorem. $D(\lambda p_1 + (1 - \lambda)p_2 \| \lambda q_1 + (1 - \lambda)q_2) \le \lambda D(p_1 \| q_1) + (1 - \lambda)D(p_2 \| q_2)$ for all $\lambda \in [0,1]$.

proof) Fix any $x \in \mathcal{X}$.

Let
$$P_1 \coloneqq \lambda p_1(x)$$
, $P_2 \coloneqq (1 - \lambda)p_2(x)$, $Q_1 \coloneqq \lambda q_1(x)$, $Q_2 \coloneqq (1 - \lambda)q_2(x)$.

Let $f(x) = x \log x$. Observe that f is (strictly) convex. $(f''(x) = \frac{1}{x \ln 2} > 0.)$

$$(P_1 + P_2)\log\frac{P_1 + P_2}{Q_1 + Q_2} = (Q_1 + Q_2) \cdot \frac{P_1 + P_2}{Q_1 + Q_2}\log\frac{P_1 + P_2}{Q_1 + Q_2}$$



$$= (Q_1 + Q_2) f\left(\frac{P_1 + P_2}{Q_1 + Q_2}\right) \qquad \frac{P_1 + P_2}{Q_1 + Q_2} = \frac{Q_1}{Q_1 + Q_2} \cdot \frac{P_1}{Q_1} + \frac{Q_2}{Q_1 + Q_2} \cdot \frac{P_2}{Q_2}$$

By Jensen's inequality,

$$(Q_1 + Q_2)f\left(\frac{P_1 + P_2}{Q_1 + Q_2}\right) \le Q_1 \cdot f\left(\frac{P_1}{Q_1}\right) + Q_2 \cdot f\left(\frac{P_2}{Q_2}\right) = P_1 \log \frac{P_1}{Q_1} + P_2 \log \frac{P_2}{Q_2}.$$

Concavity of Entropy

entropy of averaged distribution ≥ average of entropy of distributions

Theorem.
$$H(\lambda p_1 + (1 - \lambda)p_2) \ge \lambda H(p_1) + (1 - \lambda)H(p_2)$$
 for all $\lambda \in [0,1]$.

proof)

Recall that

$$D(p \parallel u) = \log |\mathcal{X}| - H(p) \text{ or } H(p) = \log |\mathcal{X}| - D(p \parallel u)$$

where u is the uniform distribution.

The theorem follows from the convexity of *D*.

Convexity/Concavity of Mutual Information

Let $(X,Y) \sim p(x,y) = p(x)p(y|x)$. Write $\alpha(x) = p(x)$ and $\beta(x,y) = p(y|x)$. Then (α,β) specifies p.

Theorem. (Mutual information concave in α) $\lambda \cdot I(X_1; Y_1) + (1 - \lambda) \cdot I(X_2; Y_2) \leq I(X_3; Y_3)$ where $(X_1, Y_1) \sim (\alpha_1, \beta), (X_2, Y_2) \sim (\alpha_2, \beta)$ and $(X_3, Y_3) \sim (\lambda \alpha_1 + (1 - \lambda)\alpha_2, \beta)$.

Let B_{λ} be the biased coin which takes 1 w/ prob. λ and 0 w/ prob. $1 - \lambda$.

Let *X* be the RV whose distribution is α_1 if $B_{\lambda} = 1$, o/w, α_2 .

Let Y be the RV conditioned on X with distribution β .

$$\begin{split} I(X_3;Y_3) &= I(B_\lambda,X;Y) \\ &= I(B_\lambda;Y) + I(X;Y|B_\lambda) \qquad \text{(by chain rule)} \\ &\geq I(X;Y|B_\lambda) \qquad \text{(by information inequality)} \\ &= \lambda \cdot I(X;Y|B_\lambda = 1) + (1-\lambda) \cdot I(X;Y|B_\lambda = 0) \\ &= \lambda \cdot I(X_1;Y_1) + (1-\lambda) \cdot I(X_2;Y_2) \end{split}$$

Convexity/Concavity of Mutual Information

Let $(X,Y) \sim p(x,y) = p(x)p(y|x)$. Write $\alpha(x) = p(x)$ and $\beta(x,y) = p(y|x)$. Then (α,β) specifies p.

Theorem. (Mutual information convex in β) $\lambda \cdot I(X_1; Y_1) + (1 - \lambda) \cdot I(X_2; Y_2) \geq I(X_3; Y_3)$ where $(X_1, Y_1) \sim (\alpha, \beta_1), (X_2, Y_2) \sim (\alpha, \beta_2)$ and $(X_3, Y_3) \sim (\alpha, \lambda \beta_1 + (1 - \lambda)\beta_2)$.

Let B_{λ} be the biased coin which takes 1 w/ prob. λ and 0 w/ prob. $1 - \lambda$.

Let X be the RV whose distribution is α . (Independent from B_{λ} .)

Let Y be the RV conditioned on X with distribution β_1 if $B_{\lambda} = 1$, o/w, β_2 .

$$I(B_{\lambda},Y;X) = I(Y;X) + I(B_{\lambda};X|Y) \qquad \text{(by chain rule)}$$

$$\geq I(Y;X) = I(X_3;Y_3) \qquad \text{(by information inequality)}$$

$$I(B_{\lambda},Y;X) = I(B_{\lambda};X) + I(Y;X|B_{\lambda}) = 0 + I(Y;X|B_{\lambda})$$

$$= \lambda \cdot I(Y;X|B_{\lambda} = 1) + (1-\lambda) \cdot I(Y;X|B_{\lambda} = 0)$$

$$= \lambda \cdot I(X_1;Y_1) + (1-\lambda) \cdot I(X_2;Y_2)$$

Data-processing Inequality

We say random variables X, Y, Z form a Markov chain $X \to Y \to Z$ if p(x, y, z) = p(x)p(y|x)p(z|y).

- * $X \to Y \to Z$ if and only if X and Z are conditionally independent given Y.
- * $X \to Y \to Z$ implies $Z \to Y \to X$.

Theorem. If $X \to Y \to Z$, then $I(X;Y) \ge I(X;Z)$.

proof)

$$I(X; Y, Z) = I(X; Y) + I(X; Z|Y) = I(X; Z) + I(X; Y|Z)$$

Since X and Z are conditionally independent given Y, I(X; Z|Y) = 0.

Corollary. If $X \to Y \to Z$, then $I(X; Y) \ge I(X; Y|Z)$.

* Holds with equality if and only if I(X; Z) = 0, i.e., X and Z are independent.

Corollary. If $X \to Y \to Z$, then $H(X|Y) \le H(X|Z)$.

Fano's Inequality

Given *Y*, we wish to guess the value of *X*.

- If we can estimate X with 0 probability of error, then H(X|Y) = 0, i.e., no uncertainty.
- If we can estimate X with "low" probability of error, then H(X|Y) is "small".

Let $\widehat{X} = g(Y)$ be the estimate of X and takes on values in \widehat{X} .

- No assumption $\widehat{\mathcal{X}} = \mathcal{X}$
- g can be random

Theorem. For any estimator \hat{X} s.t. $X \to Y \to \hat{X}$, we have

$$H(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$$

where $P_e = \Pr[\hat{X} \neq X]$ is the probability of error.

Weaker statement.

Why
$$H(P_e) \le 1$$
?
 $1 + P_e \log |\mathcal{X}| \ge H(X|Y) \iff P_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}|}$.

Fano's Inequality

Theorem. For any estimator \hat{X} s.t. $X \to Y \to \hat{X}$, we have

$$H(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$$

where $P_e = \Pr[\hat{X} \neq X]$ is the probability of error.

proof of first inequality)

Let $E = \mathbb{I}[\hat{X} \neq X]$ be the binary RV.

$$H(E,X|\hat{X}) = H(X|\hat{X}) + H(E|X,\hat{X}) = H(X|\hat{X})$$
$$= H(E|\hat{X}) + H(X|E,\hat{X}) \le H(P_e) + P_e \log|\mathcal{X}|$$

- $H(E|X,\widehat{X})=0$
- $H(E|\hat{X}) \le H(E) = H(P_e)$ unconditioning increases entropy
- $H(X|E,\hat{X}) = \Pr[E=1]H(X|E=1,\hat{X}) \leq P_e \cdot H(X) \leq P_e \log |\mathcal{X}|$.

 uniform distribution maximizes entropy

* The first inequality holds without the condition $X \to Y \to \hat{X}$.

data-processing inequality
If $X \to Y \to Z$, then $H(X|Y) \le H(X|Z)$

Fano's Inequality

Theorem. For any estimator \hat{X} s.t. $X \to Y \to \hat{X}$ and $\mathcal{X} = \hat{\mathcal{X}}$, we have

$$H(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X|\hat{X}) \ge H(X|Y)$$

where $P_e = \Pr[\hat{X} \neq X]$ is the probability of error.

Weaker statement.

$$P_e \ge \frac{H(X|Y) - 1}{\log(|\mathcal{X}| - 1)}$$

Fano's Inequality

Remark. Fano's inequality s sharp.

Suppose no knowledge of *Y*, i.e., guess *X* without any information.

Let our (deterministic) estimator be x^* where $p(x^*) = \max_{x \in \mathcal{X}} p(x)$.

Fano's inequality says

$$H(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X).$$

If $p(\cdot)$ restricted to $\mathcal{X}\setminus\{x^*\}$ were a uniform distribution, i.e., $p(x) = \frac{1-p(x^*)}{|\mathcal{X}|-1}$ for all $x \neq x^*$, this holds with equality.

More Inequalities Related to Probability of Error and Entropy

Lemma. If X and X' are independent identically distributed,

$$\Pr[X = X'] \ge 2^{-H(X)}$$

with equality if and only if *X* has a uniform distribution.

proof) Note that 2^x is (strictly) convex.

By Jensen's inequality,

$$2^{-H(X)} = 2^{\mathbb{E}[\log p(X)]} \le \mathbb{E}[2^{\log p(X)}] = \mathbb{E}[p(X)] = \sum_{x \in \mathcal{X}} p^2(x) = \Pr[X = X'].$$

Corollary. If $X \sim p$ and $X' \sim q$ are independent and $\mathcal{X} = \mathcal{X}'$,

$$\Pr[X = X'] \ge 2^{-H(p) - D(p||q)}$$

$$\Pr[X = X'] \ge 2^{-H(q) - D(q || p)}$$

Cover and Thomas, Elements of Information Theory (2nd edition), Chapter 3

AEP

Asymptotic Equipartition Property
Typical Set
Simple Data Compression

Weak Law of Large Numbers

Let $Z_1, Z_2, ..., Z_n$ be a sequence of i.i.d RVs with mean μ and variance σ^2 .

Let $\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i$ be the sample mean.

Weak law of large numbers.

$$\Pr[|\bar{Z}_n - \mu| > \epsilon] \le \frac{\sigma^2}{n\epsilon^2}$$
 or
$$\Pr[|\bar{Z}_n - \mu| > \epsilon] \to 0 \text{ as } n \to \infty$$

proof)

Note $\mathbb{E}[\bar{Z}_n] = \mu$ and $Var(\bar{Z}_n) = \sigma^2/n$. (Each Z_i has variance σ^2/n^2 .) Apply Chebyshev's inequality.

Consider a sequence of i.i.d RVs $X_1, X_2, ..., X_n$.

 $\frac{\mathsf{AEP}}{-\frac{1}{n}\log p(X_1, X_2, \dots, X_n)} \to H(X) \text{ in probability}$

Consider a sequence of i.i.d RVs $X_1, X_2, ..., X_n$.

Consider a sequence of RVs $Z_1, Z_2, ..., Z_n$ (also i.i.d.) such that $Z_i := -\log p(X_i)$ for all i = 1, ..., n.

Let
$$\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i = -\frac{1}{n} \sum_{i=1}^n \log p(X_i)$$
. Note that $\mathbb{E}[\bar{Z}_n] = H(X)$.

AEP

 $\bar{Z}_n \to H(X)$ in probability

AEP (more formally). For any $\epsilon > 0$, there exists n_0 such that for all $n \geq n_0$,

$$\Pr[|\bar{Z}_n - H(X)| > \epsilon] \le \epsilon$$

or equivalently,

$$\Pr[|\bar{Z}_n - H(X)| > \epsilon] \to 0 \text{ as } n \to \infty$$

proof)

Direct application of weak law of large numbers gives the following:

$$\Pr[|\bar{Z}_n - H(X)| > \epsilon] \le \frac{\sigma^2}{n\epsilon^2}$$

where σ^2 is the variance of Z_i .

Let $n_0 = \frac{\sigma^2}{\epsilon^3}$. Then for all $n \ge n_0$,

$$\frac{\sigma^2}{n\epsilon^2} \le \frac{\sigma^2}{n_0\epsilon^2} \le \epsilon.$$

AEP. For any $\epsilon > 0$, for all sufficiently large n,

$$\Pr\left[\left|\frac{1}{n}\log p(X_1, X_2, \dots, X_n) - H(X)\right| > \epsilon\right] \le \epsilon$$

$$\Pr\left[\left|\frac{1}{n}\log p(X_1, X_2, \dots, X_n) + H(X)\right| > \epsilon\right] \le \epsilon$$

$$\Pr\left[\left|\frac{1}{n}\log p(X_1, X_2, \dots, X_n) + H(X)\right| < \epsilon\right] \ge 1 - \epsilon$$

$$\Pr\left[-\epsilon < \frac{1}{n}\log p(X_1, X_2, \dots, X_n) + H(X) < \epsilon\right] \ge 1 - \epsilon$$

AEP. For any $\epsilon > 0$, for all sufficiently large n,

$$\Pr\left[-\epsilon < \frac{1}{n}\log p(X_1, X_2, \dots, X_n) + H(X) < \epsilon\right] \ge 1 - \epsilon$$

$$\Pr\left[-H(X) - \epsilon < \frac{1}{n}\log p(X_1, X_2, \dots, X_n) < -H(X) + \epsilon\right] \ge 1 - \epsilon$$

$$\Pr\left[-n(H(X) + \epsilon) < \log p(X_1, X_2, \dots, X_n) < -n(H(X) - \epsilon)\right] \ge 1 - \epsilon$$

$$\Pr\left[2^{-n(H(X) + \epsilon)} < p(X_1, X_2, \dots, X_n) < 2^{-n(H(X) - \epsilon)}\right] \ge 1 - \epsilon$$

"Almost all events are almost equally surprising".

Typical Set

The typical set $A_{\epsilon}^{(n)}$ w.r.t. p is the set of sequence $\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathcal{X}^n$ such that $2^{-n(H(X)+\epsilon)} < p(\mathbf{x}) < 2^{-n(H(X)-\epsilon)}$.

Trivially, $\Pr\left[\mathbf{X} \in A_{\epsilon}^{(n)}\right] \ge 1 - \epsilon$.

Theorem. $(1 - \epsilon)2^{n(H(X) - \epsilon)} \le \left|A_{\epsilon}^{(n)}\right| \le 2^{n(H(X) + \epsilon)}$ for sufficiently large n.

(upper bound)
$$1 = \sum_{\mathbf{x} \in \mathcal{X}^n} p(\mathbf{x}) \ge \sum_{\mathbf{x} \in A_{\epsilon}^{(n)}} p(\mathbf{x}) \ge 2^{-n(H(X) + \epsilon)} \left| A_{\epsilon}^{(n)} \right|$$

(lower bound)
$$1 - \epsilon \le \sum_{\mathbf{x} \in A_{\epsilon}^{(n)}} p(\mathbf{x}) \le 2^{-n(H(X) - \epsilon)} \left| A_{\epsilon}^{(n)} \right|$$

Consequence of AEP: Data Compression

Find a short description (i.e., binary string representation) for sequences of i.i.d RVs $X_1, X_2, ..., X_n$. **Algorithm**.

- 1. Divide sequences in \mathcal{X}^n into $A_{\epsilon}^{(n)}$ and $A_{\epsilon}^{(n)} \setminus \mathcal{X}^n$.
- 2. Index all $\mathbf{x} \in A_{\epsilon}^{(n)}$ using $[n(H(X) + \epsilon)] + 1$ bits with most significant bit set to 0.
- 3. Index all $\mathbf{x} \notin A_{\epsilon}^{(n)}$ using $\lceil n \log |\mathcal{X}| \rceil + 1$ bits with most significant bit set to 1.

Expected length ℓ of the codeword

$$\sum_{\mathbf{x}\in\mathcal{X}^{n}} p(\mathbf{x})\ell(\mathbf{x}) = \sum_{\mathbf{x}\in A_{\epsilon}^{(n)}} p(\mathbf{x})(\lceil n(H(X)+\epsilon)\rceil + 1) + \sum_{\mathbf{x}\notin A_{\epsilon}^{(n)}} p(\mathbf{x})(\lceil n\log|\mathcal{X}|\rceil + 1)$$

$$\leq (n(H(X)+\epsilon)+2)\Pr\left[\mathbf{X}\in A_{\epsilon}^{(n)}\right] + (n\log|\mathcal{X}|+2)\Pr\left[\mathbf{X}\notin A_{\epsilon}^{(n)}\right]$$

$$\leq n(H(X)+\epsilon) + \epsilon n\log|\mathcal{X}| + 2$$

$$= n\left(H(X)+\epsilon + \epsilon\log|\mathcal{X}| + \frac{2}{n}\right) = n(H(X)+\epsilon')$$

High Probability and Small Set

 $A_{\epsilon}^{(n)}$ has size $\approx 2^{nH(X)}$ but contains most of the probability.

Is there much smaller set with most of the probability?

For each n, let $B_{\delta}^{(n)} \subseteq \mathcal{X}^n$ be a smallest set with $\Pr\left[\mathbf{X} \in B_{\delta}^{(n)}\right] \ge 1 - \delta$.

Observe
$$\Pr\left[\mathbf{X} \in A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}\right] \ge 1 - \Pr\left[\mathbf{X} \notin A_{\epsilon}^{(n)}\right] - \Pr\left[\mathbf{X} \notin B_{\delta}^{(n)}\right] \ge 1 - \epsilon - \delta$$
. Moreover,

$$\Pr\left[\mathbf{X} \in A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)}\right] \le \left| A_{\epsilon}^{(n)} \cap B_{\delta}^{(n)} \right| 2^{-n(H(X) - \epsilon)} \le \left| B_{\delta}^{(n)} \right| 2^{-n(H(X) - \epsilon)}$$

$$\mathbf{x} \in A_{\epsilon}^{(n)} \Rightarrow p(\mathbf{x}) < 2^{-n(H(X) - \epsilon)}$$

By rearranging, we obtain

$$\left| B_{\delta}^{(n)} \right| \ge (1 - \epsilon - \delta) 2^{n(H(X) - \epsilon)} \approx 2^{nH(X)}$$

$$A_{\epsilon}^{(n)}$$
 vs $B_{\delta}^{(n)}$

Suppose we have a biased coin X with probability 0.6.

$$H(X) = -0.6 \log 0.6 - 0.4 \log 0.4 \approx 0.97$$

Consider when n=25 and $\epsilon=0.1$.

Recall
$$A_{\epsilon}^{(n)} = \left\{ \mathbf{x} \in \mathcal{X}^n \mid H(X) - \epsilon < -\frac{1}{n} \log p(\mathbf{x}) < H(X) + \epsilon \right\}$$

$$A_{0.1}^{(25)} = \left\{ \mathbf{x} \in \mathcal{X}^{25} \mid 0.87 < -\frac{1}{n} \log p(\mathbf{x}) < 1.07 \right\}$$

$$A_{\epsilon}^{(n)}$$
 vs $B_{\delta}^{(n)}$

$$A_{0.1}^{(25)} = \left\{ \mathbf{x} \in \mathcal{X}^{25} \mid 0.87 < -\frac{1}{n} \log p(\mathbf{x}) < 1.07 \right\}$$

For x with #1=0, $-\frac{1}{n}\log p(\mathbf{x}) = -\frac{1}{25}\log 0.4^{25} = -\log 0.4 \approx 1.32$

For x with #1=1,
$$-\frac{1}{n}\log p(\mathbf{x}) = -\frac{1}{25}\log 0.4^{24}0.6 \approx 1.29$$

. . .

For x with #1=10,
$$-\frac{1}{n}\log p(\mathbf{x}) = -\frac{1}{25}\log 0.4^{15}0.6^{10} \approx 1.08$$

For x with #1=11,
$$-\frac{1}{n}\log p(\mathbf{x}) = -\frac{1}{25}\log 0.4^{16}0.6^{11} \approx 1.06$$

. . .

For x with #1=19,
$$-\frac{1}{n}\log p(\mathbf{x}) = -\frac{1}{25}\log 0.4^6 0.6^{19} \approx 0.88$$

For x with #1=20,
$$-\frac{1}{n}\log p(\mathbf{x}) = -\frac{1}{25}\log 0.4^5 0.6^{20} \approx 0.85$$

. . .

$$A_{\epsilon}^{(n)}$$
 vs $B_{\delta}^{(n)}$

Suppose we have a biased coin *X* with probability 0.6.

$$H(X) = -0.6 \log 0.6 - 0.4 \log 0.4 \approx 0.97$$

Consider when n=25 and $\epsilon=0.1$.

Recall
$$A_{\epsilon}^{(n)} = \left\{ \mathbf{x} \in \mathcal{X}^n \mid H(X) - \epsilon < -\frac{1}{n} \log p(\mathbf{x}) < H(X) + \epsilon \right\}$$

$$A_{0.1}^{(25)} = \left\{ \mathbf{x} \in \mathcal{X}^{25} \mid \mathbf{11} \le \#\mathbf{1} \text{ in } \mathbf{x} \le \mathbf{19} \right\}$$

Recall $B_{\delta}^{(n)}$ is a smallest set with $\Pr\left[\mathbf{X} \in B_{\delta}^{(n)}\right] \geq 1 - \delta$.

To find $B_{0,1}^{(25)}$, keep selecting $\mathbf{x} \in \mathcal{X}^n$ with highest prob. until we reach a total probability of 0.9.

$$A_{\epsilon}^{(n)}$$
 vs $B_{\delta}^{(n)}$

 $B_{0.1}^{(25)}$ is a smallest set with $\Pr\left[\mathbf{X} \in B_{0.1}^{(25)}\right] \ge 0.9$.

- Select x with #1=25 / cumulative total probability $0.6^{25} \approx 0.000003$
- Select x with #1=24 / cumulative total probability $\approx 0.000003 + 0.000047 = 0.00005$

. . .

- Select x with #1=13 / cumulative total probability ≈ 0.846
- Select x with #1=12 / cumulative total probability ≈ 0.922

$$A_{\epsilon}^{(n)}$$
 vs $B_{\delta}^{(n)}$

Suppose we have a biased coin *X* with probability 0.6.

$$H(X) = -0.6 \log 0.6 - 0.4 \log 0.4 \approx 0.97$$

Consider when n=25 and $\epsilon=0.1$.

Recall
$$A_{\epsilon}^{(n)} = \left\{ \mathbf{x} \in \mathcal{X}^n \mid H(X) - \epsilon < -\frac{1}{n} \log p(\mathbf{x}) < H(X) + \epsilon \right\}$$

$$A_{0.1}^{(25)} = \left\{ \mathbf{x} \in \mathcal{X}^{25} \mid \mathbf{11} \le \#\mathbf{1} \text{ in } \mathbf{x} \le \mathbf{19} \right\}$$

Recall $B_{\delta}^{(n)}$ is a smallest set with $\Pr\left[\mathbf{X} \in B_{\delta}^{(n)}\right] \geq 1 - \delta$.

$$\left\{ \mathbf{x} \in \mathcal{X}^{25} \mid \#1 \text{ in } \mathbf{x} \ge \mathbf{13} \right\} \subset B_{0.1}^{(25)} \subsetneq \left\{ \mathbf{x} \in \mathcal{X}^{25} \mid \#1 \text{ in } \mathbf{x} \ge \mathbf{12} \right\}$$

$$\Pr \left[\mathbf{X} \in A_{0.1}^{(25)} \cap B_{0.1}^{(25)} \right] \approx 0.87$$

Remark. The bound $(1 - \epsilon)2^{n(H(X) - \epsilon)} \le \left|A_{\epsilon}^{(n)}\right| \le 2^{n(H(X) + \epsilon)}$ is (very) loose.

$$\left| A_{0.1}^{(25)} \right| = 26,366,510$$

lower bound = 3,742,308 and upper bound = 114,438,718.

Cover and Thomas, Elements of Information Theory (2nd edition), Chapter 4

Entropy Rate

Entropy of RVs from a stationary process

Markov chain

Stochastic Process

Stochastic process $\{X_i\}$: an indexed sequence of RVs with arbitrary dependence

Stationary stochastic process: joint distribution of any subset is invariant w.r.t. shifts in index

$$\Pr[(X_1, X_2, \dots, X_n) = (x_1, x_2, \dots, x_n)] = \Pr[(X_{1+\ell}, X_{2+\ell}, \dots, X_{n+\ell}) = (x_1, x_2, \dots, x_n)]$$

Entropy Rate

Definition 1 (entropy per symbol).

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots, X_n)$$
 when the limit exists

Definition 2 (conditional entropy of the last).

$$H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n \mid X_{n-1}, X_{n-2}, \dots, X_1)$$
 when the limit exists

Theorem. For a stationary stochastic process, H(X) = H'(X).

proof)

Observe $H(X_n \mid X_{n-1}, X_{n-2}, ..., X_1)$ only decreases when n increases. (Since $H \ge 0$, limit exists)

$$H(X_n \mid X_{n-1}, X_{n-2}, \dots, X_1) = H(X_{n+1} \mid X_n, X_{n-1}, \dots, X_2) \geq H(X_{n+1} \mid X_n, X_{n-1}, \dots, X_2, X_1)$$
 stationarity conditioning property

By Cesáro mean,
$$\lim_{n\to\infty} H(X_n \mid X_{n-1}, X_{n-2}, \dots, X_1) = \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n H(X_i \mid X_{i-1}, \dots, X_1).$$

By chain rule, $H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1)$.

General AEP

AEP

For any i.i.d. process, in probability,

$$-\frac{1}{n}\log p(X_1,\ldots,X_n)\to H(X)$$

General AEP

For any stationary ergodic process, with probability 1,

$$-\frac{1}{n}\log p(X_1,\ldots,X_n)\to H(\mathcal{X})$$

Markov Chain

Markov chain (or process): dependence only on the one just before it

$$\Pr[X_{n+1} = x_{n+1} \mid (X_1, X_2, ..., X_n) = (x_1, x_2, ..., x_n)] = \Pr[X_{n+1} = x_{n+1} \mid X_n = x_n]$$

* Here we assume Markov chain is time invariant, i.e.,

$$\Pr[X_{n+1} = b \mid X_n = a] = \Pr[X_2 = b \mid X_1 = a]$$

Fundamental Theorem of Markov Chain.

A finite, irreducible and aperiodic Markov chain

- has the unique stationary distribution and
- any distribution converges to the stationary distribution.

Stationary distribution: $\mu = \mu^T P$

Irreducible: Transition graph *P* is strongly connected component.

Aperiodic: GCD(all closed directed walk from v to v w/ prob.>0)=1.

Stationary Markov Chain

With initial dist. as stationary dist. μ , Markov chain is a stationary process.

$$H(\mathcal{X}) = H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n \mid X_{n-1}, X_{n-2}, \dots, X_1) = \lim_{n \to \infty} H(X_n \mid X_{n-1}) = H(X_2 \mid X_1)$$
 Markovity stationarity

We have

$$H(\mathcal{X}) = H(X_2 \mid X_1) = \sum_{i,j} \mu(i)H(X_2 \mid X_1 = i)$$

$$= -\sum_{i} \mu(i) \sum_{j} P_{ij} \log P_{ij}$$

$$= -\sum_{i} \mu(i)P_{ij} \log P_{ij}$$

Functions of Markov Chain

Let $\{X_i\}$ be a stationary Markov chain.

Consider $\{Y_i\}$ where $Y_i = \phi(X_i)$.

Note $\{Y_i\}$ does not necessarily form a Markov chain.

Consider a Markov chain with $P_{ac} = P_{ca} = P_{bb} = 1$.

Observe the uniform distribution is a stationary distribution.

Now consider a function ϕ such that $\phi(a) = \phi(b) = s$ and $\phi(c) = t$.

$$Pr[Y_3 = s \mid Y_2 = s] = \frac{1}{2}$$

$$Pr[Y_3 = s \mid Y_2 = s, Y_1 = s] = 1$$

Functions of Markov Chain

Let $\{X_i\}$ be a stationary Markov chain.

Consider $\{Y_i\}$ where $Y_i = \phi(X_i)$.

Note $\{Y_i\}$ does not necessarily form a Markov chain.

Therefore, to compute $H(\mathcal{Y})$, need to compute $H(Y_n \mid Y_{n-1}, Y_{n-2}, ..., Y_1)$.

How to know $H(Y_n \mid Y_{n-1}, Y_{n-2}, ..., Y_1) \approx H(\mathcal{Y})$ for any n?

Recall that it converges from above.

$$\cdots \ge H(Y_n \mid Y_{n-1}, Y_{n-2}, \dots, Y_1) \ge H(Y_{n+1} \mid Y_n, Y_{n-1}, \dots, Y_1) \ge \cdots \ge H(\mathcal{Y})$$

Lemma. $H(Y) \ge H(Y_n \mid Y_{n-1}, Y_{n-2}, ..., Y_1, X_1)$.

$$H(Y_n \mid Y_{n-1}, Y_{n-2}, \dots, Y_1, X_1) \le H(\mathcal{Y}) \le H(Y_n \mid Y_{n-1}, Y_{n-2}, \dots, Y_1)$$

Theorem.

$$\lim_{n \to \infty} H(Y_n \mid Y_{n-1}, Y_{n-2}, \dots, Y_1, X_1) = H(\mathcal{Y}) = \lim_{n \to \infty} H(Y_n \mid Y_{n-1}, Y_{n-2}, \dots, Y_1)$$

If ϕ is random, this is related to a *hidden Markov chain* (HMM)

Thank You