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Chap 8
Differential Entropy
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Recap : Case of Discrete RV

• 𝐻 𝑋 = −∑𝑝 𝑥 log 𝑝 𝑥 = −𝐸! log 𝑝 𝑥 𝑓𝑜𝑟 𝑥 ∈ 𝑋

• 𝐻 𝑋, 𝑌 = −∑𝑝 𝑥, 𝑦 log 𝑝 𝑥, 𝑦

• 𝐻 𝑌|𝑋 = ∑𝑝 𝑥 𝐻 𝑌 𝑋 = 𝑥 = −∑∑𝑝 𝑥, 𝑦 log 𝑝(𝑦|𝑥)

• 𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋

• 𝐷 𝑝||𝑞 = ∑𝑝 𝑥 log !(#)
%(#)

• 𝐼 𝑋; 𝑌 = ∑∑𝑝 𝑥, 𝑦 log ! #,'
! # !(')

• 𝐿𝑒𝑡 𝑃( = Pr A𝑋 𝑌 ≠ 𝑋 , 𝑡ℎ𝑒𝑛 𝐻 𝑃( + 𝑃( log 𝜒 ≥ 𝐻 𝑋 𝑌
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Recap : Case of Discrete RV

• Converge in probability 𝑖𝑓 ∀ 𝜖 > 0, Pr 𝑋! − 𝑋 > 𝜖 → 0
• Converge in mean square 𝑖𝑓 𝐸 𝑋! − 𝑋 " → 0

• Converge almost surely 𝑖𝑓 Pr lim
!→$

𝑋! = 𝑋 = 1

• 𝑍%, … , 𝑍! are i.i.d. ~ 𝜇, 𝜎" , 𝑍! =
%
!
∑𝑍& , Pr 𝑍! − 𝜇 > 𝜖 ≤ '!

!(!

• 𝐼𝑓 𝑋%, 𝑋", … are i.i.d.~𝑝 𝑥 , 𝑡ℎ𝑒𝑛 − %
!
log 𝑝 𝑋%, 𝑋", … , 𝑋! → 𝐻 𝑋

in probability.

• 𝐴(
(!) = 𝑥%, … , 𝑥! ∈ 𝜒! 2+!(, - .() ≤ 𝑝 𝑥%, … , 𝑥! ≤ 2+!(, - +()}
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Continuous RV & Density Function

Def

For random variable 𝑋

& cumulative distribution function 𝐹 𝑥 = Pr 𝑋 ≤ 𝑥 ,

If 𝐹 𝑥 is continuous, then 𝑋 is said to be continuous.

If 𝐹 𝑥 is absolutely continuous where 𝐹′ 𝑥 = f 𝑥 and 
∫+$
$ f 𝑥 = 1, then f 𝑥 is called the probability density function 

of 𝑋.
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Density Function

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = '
!

"
𝑓 𝑥 𝑑𝑥

𝑓(𝑥)

𝑥𝑎 𝑏

𝑃𝑟 𝑥 ? ?

𝑥𝑎 𝑏

.
.

.

2024. 3. 29. 7



Expectation of Random Variable

• Discrete

𝐸 𝑔 𝑋 = ∑𝑝 𝑥 𝑔(𝑥)

• Continuous

𝐸 𝑔 𝑋 = ∫/ 𝑓 𝑥 𝑔 𝑥 𝑑𝑥
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Definition of Differential Entropy

Def
Differential Entropy

h 𝑋 = ℎ 𝑓 = −'
/
𝑓 𝑥 log 𝑓 𝑥 𝑑𝑥 , 𝑆 ∶ 𝑠𝑢𝑝𝑝 𝑋

Joint Differential Entropy

h 𝑋0, … , 𝑋1 = −'
/
𝑓 𝑥0, … , 𝑥1 log 𝑓 𝑥0, … , 𝑥1 𝑑𝑥0…𝑑𝑥1

Conditional Differential Entropy

h 𝑋|𝑌 = −'𝑓 𝑥, 𝑦 log 𝑓 𝑥|𝑦 𝑑𝑥 𝑑𝑦

In general f x y = 2(3,5)
6(5) holds, thus h X Y = h X, Y − h Y .
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Definition of KL-distance and Mutual Information

Def

KL-distance (Relative Entropy)

𝐷 𝑓||𝑔 = H𝑓 log
𝑓
𝑔

Mutual Information (when joint density 𝑓 𝑥, 𝑦 is given.)

𝐼 𝑋; 𝑌 = H𝑓 𝑥, 𝑦 log
𝑓 𝑥, 𝑦
𝑓 𝑥 𝑓 𝑦 𝑑𝑥 𝑑𝑦

In general, 𝐼 𝑋; 𝑌 = ℎ 𝑋 − ℎ 𝑋 𝑌 = 𝐷 𝑓 𝑥, 𝑦 ||𝑓 𝑥 𝑓 𝑦
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Relation of Differential & Discrete Entropy

• Divide the range of X into bins 
of length ∆

• By MVT, ∃𝑥& 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝑓 𝑥& ∆= W
&∆

&.% ∆
𝑓 𝑥 𝑑𝑥

• Let 𝑋∆ = 𝑥& , 𝑖𝑓 𝑖∆≤ 𝑋 < 𝑖 + 1 ∆

• Then, p1 = Pr 𝑋∆ = 𝑥& = 𝑓 𝑥& ∆
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Relation of Differential & Discrete Entropy

𝐻 𝑋∆ = −[
+$

$

𝑝& log 𝑝&

= −[
+$

$

𝑓 𝑥& ∆ log 𝑓 𝑥& ∆

= −[∆𝑓 𝑥& log 𝑓 𝑥& −[∆𝑓 𝑥& log ∆

= −[∆𝑓 𝑥& log 𝑓 𝑥& − log ∆
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Relation of Differential & Discrete Entropy

• Thus, if density 𝑓 𝑥 of the RV 𝑋 is 
Riemann integrable, then
𝐻 𝑋∆ + log ∆ → ℎ 𝑓 = ℎ 𝑋 as ∆→ 0

• The entropy of an n-bit quantization of 
a continuous RV 𝑋 is approximately 
ℎ 𝑋 + n.
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General Definition of Mutual Information

• Mutual information of two continuous random variables is 
the limit of the mutual information between their quatized
versions.

𝐼 𝑋∆; 𝑌∆ = 𝐻 𝑋∆ −𝐻 𝑋∆|𝑌∆

≈ ℎ 𝑋 − log ∆ − ℎ 𝑋 𝑌 − log ∆
= 𝐼(𝑋; 𝑌)
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General Definition of Mutual Information

Def

Let 𝜒 be the range of a RV 𝑋. A partition 𝒫 of 𝜒 is a finite 
collection of disjoint sets 𝑃& s.t ⋃& 𝑃& = 𝜒.

The quantization of 𝑋 by 𝒫 is the discrete RV defined by

Pr 𝑋 𝒫 = 𝑖 = Pr 𝑋 ∈ 𝑃& = W
3"
𝑑𝐹 𝑥

Mutual Information (when joint density 𝑓 𝑥, 𝑦 is not given.)
𝐼 𝑋; 𝑌 = sup

𝒫,𝒬
𝐼( 𝑋 𝒫; 𝑌 𝒬)
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Some Properties

• 𝐷 𝑓||𝑔 ≥ 0 equality holds iff 𝑓 = 𝑔 almost everywhere

• I 𝑋; 𝑌 ≥ 0 equality holds iff 𝑋 and 𝑌 are independent

• h 𝑋|𝑌 ≤ ℎ(𝑋) equality holds iff 𝑋 and 𝑌 are independent

• ℎ 𝑋%, … , 𝑋! = ∑&6%! ℎ 𝑋& 𝑋%, … , 𝑋&+%
• h 𝑎𝑋 = ℎ 𝑋 + log 𝑎
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AEP for Continuous Random Variable 

Almost same for discrete case :

Let 𝑋%, … , 𝑋! be a sequence of RV with i.i.d. & density 𝑓(𝑥).

Then, − %
!
log 𝑓 𝑋%, … , 𝑋! → 𝐸 − log 𝑓 𝑋 = ℎ 𝑋 in probability.

2024. 3. 29. 17



Typical set for Continuous Random Variable 

Def

For 𝜖 > 0 and any 𝑛,

𝐴)
(*) = 𝑥+, … , 𝑥* ∈ 𝑆*: −

1
𝑛
log 𝑓 𝑥+, … , 𝑥* − ℎ 𝑋 ≤ 𝜖

Since 𝑋+, … , 𝑋* are i.i.d. 𝑓 𝑥+, … , 𝑥* = ∏,-+
* 𝑓 𝑥,

The volume of a set 𝐴 ⊂ ℛ* is defined as

𝑉𝑜𝑙 𝐴 = H
.
𝑑𝑥+…𝑑𝑥*
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Some Properties of the Typical set

• Pr 𝐴(
! > 1 − 𝜖 for sufficiently large 𝑛

• Vol 𝐴(
! ≤ 2! 7 - .( for all 𝑛

• Vol 𝐴(
! ≥ (1 − 𝜖)2! 7 - +( for sufficiently large 𝑛
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Entropy with Normal Distribution

Let 𝑋~𝜙 𝑥 = !
"#$#

𝑒
$%#

#&#

ℎ 𝜙 = −)𝜙 ln𝜙

= −)𝜙 𝑥 −
𝑥"

2𝜎" − ln 2𝜋𝜎"

=
𝐸𝑋"

2𝜎"
+
1
2
ln 2𝜋 𝜎"

=
1
2
+
1
2
ln 2𝜋 𝜎"

=
1
2 ln 2𝜋 𝑒𝜎

"
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Chap 9
Gaussian Channel
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Gaussian Channel

The most important continuous 
alphabet channel.

𝑋& : input

𝑍&~𝒩 0,𝑁 : i.i.d. gaussian noise

𝑌& = 𝑋& + 𝑍& where 𝑖 is discrete time
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Gaussian Channel without Noise

The capacity of the gaussian 
channel without noise is infinity 
since 𝑋 can take on any real value 
and transmit it with no error.
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Gaussian Channel without constraint

What happens there exists a noise 
𝑍&~𝒩 0,𝑁 ?
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Gaussian Channel without constraint

We can choose an infinite subset 
of inputs arbitrarily far apart, so 
that they are distinguishable at the 
output with arbitrarily small 
probability of error.

⇒ Without constraint, it still has 
infinity capacity!
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Gaussian Channel with constraint

The most common limitation on 
input is an average power constraint.

1
𝑛
∑𝑥&" ≤ 𝑃 ∶ power constraint

Also, we use quantization to convert 
the Gaussian channel into a discrete 
channel which is easier to process.
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The Capacity of the Gaussian Channel

Def

The information capacity of the Gaussian channel with power 
constraint P is given as

𝐶 = max
8 9 :;-!<3

𝐼 𝑋; 𝑌
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The Capacity of the Gaussian Channel

𝐶 = max
8 9 :;-!<3

𝐼 𝑋; 𝑌

𝐼 𝑋; 𝑌 = ℎ 𝑌 − ℎ 𝑌 𝑋
= ℎ 𝑌 − ℎ 𝑋 + 𝑍 𝑋
= ℎ 𝑌 − ℎ 𝑍 𝑋
= ℎ 𝑌 − ℎ 𝑍

Here, ℎ 𝑍 = %
"
log 2𝜋𝑒𝑁 as calculated in previous chapter.
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The Capacity of the Gaussian Channel

𝐸𝑌" = 𝐸 𝑋 + 𝑍 " = 𝐸𝑋" + 2𝐸𝑋𝐸𝑍 + 𝐸𝑍" ≤ 𝑃 + 𝑁

because X & 𝑍~𝒩 0,𝑁 are independent and 𝐸𝑋" ≤ 𝑃

However, for a fixed variance, the normal distribution 
maximizes the entropy. (Theorem 8.6.5)

Thus, ℎ 𝑌 ≤ %
"
log 2𝜋𝑒(𝐸𝑌")
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The Capacity of the Gaussian Channel

By combining the previous results,

𝐼 𝑋; 𝑌 = ℎ 𝑌 − ℎ 𝑍

≤
1
2
log 2𝜋𝑒 𝐸𝑌" −

1
2
log 2𝜋𝑒𝑁

≤
1
2
log 2𝜋𝑒 𝑃 + 𝑁 −

1
2
log 2𝜋𝑒𝑁

=
1
2
log 1 +

𝑃
𝑁
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The Capacity of the Gaussian Channel

Thus, the information capacity of the Gaussian channel is

𝐶 = max
;-!<3

𝐼 𝑋; 𝑌 =
1
2
log 1 +

𝑃
𝑁

The maximum is attained when 𝑋~𝒩 0, 𝑃

The definitions for (M, n) code, the rate of error, and achievable 
are almost same as in chapter 7. Please check the textbook.
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The Bandlimited Channels (Continuous Time)

The commonly used channel like a 
radio network or a telephone line 
is a bandlimited channel with white 
noise.

𝑌 𝑡 = 𝑋 𝑡 + 𝑍 𝑡 ∗ ℎ(𝑡)

Here, h t is the impulse response 
of a low pass filter and ∗ is the 
convolution operator.

𝑋(𝑡) 𝑌(𝑡)

𝑍(𝑡) ℎ(𝑡)

+ ∗
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Representation Theorem

Theorem 9.3.1 by Nyquist and Shannon

𝑓 𝑡  is bandlimited to W (i.e. the spectrum of the function is 0 

for all frequencies greater than W).

Then, the 𝑓 𝑡  is completely determined by samples of the 

function spaced 
%
"=

seconds apart.
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Proof of the Representation Theorem

Let 𝐹 𝜔  be the Fourier transform of 𝑓 𝑡 . Then,

𝑓 𝑡 =
1
2𝜋

W
+$

$
𝐹 𝜔 𝑒&>?𝑑𝜔

=
1
2𝜋

W
+"@=

"@=
𝐹 𝜔 𝑒&>?𝑑𝜔

If we consider samples spaced 
%
"=

 seconds apart,

𝑓
𝑛
2𝑊

=
1
2𝜋

W
+"@=

"@=
𝐹 𝜔 𝑒&>

!
"=𝑑𝜔

2024. 3. 29. 34



Proof of the Representation Theorem

Def (continuous Fourier Series)

Let f ∶ 𝑎, 𝑏 → ℂ be an integrable function with 𝐿 = 𝑏 − 𝑎, then 
the k-th Fourier coefficient of f is defined by

𝑎A =
1
𝐿
W
B

C
𝑒+

"@
D &A9𝑓 𝑥 𝑑𝑥

The Fourier series of f is given by formally

𝑓 𝑥 ~∑𝑎A𝑒
"@
D &A9
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Proof of the Representation Theorem

𝑓 −
𝑛
2𝑊

=
1
2𝜋

W
+"@=

"@=
𝐹 𝜔 𝑒+&>

!
"=𝑑𝜔

From the above equation, right side is the Fourier coefficient of 
F 𝜔 .

Thus, we can calculate the Fourier coefficients of F 𝜔  from the 
sampled points.

After that, By using Fourier inversion, we can determine the 
original function 𝑓(𝑡).
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Proof of the Representation Theorem

When we only consider the real part, the given function can be 

explicitly represented in terms of its samples as following:

𝑓 𝑡 = g t = [
!6+$

$

𝑓
𝑛
2𝑊

𝑠𝑖𝑛𝑐 𝑡 −
𝑛
2𝑊

where 𝑠𝑖𝑛𝑐 𝑡 = E1F("@=?)
"@=?
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The capacity of the Bandlimited Channels

By the Nyquist-Shannon sampling theorem, a bandlimited 

function has only 2W degrees of freedom per second.

Also, we can say that the most of the power is in bandwidth W 

and in a finite time interval (0, T).

Then, we can describe any function with 2TW orthonormal bases 

as almost timelimited & almost bandlimited.
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The capacity of the Bandlimited Channels

Let the noise has power spectral density 
G#
"

(W/hz) and 

bandwidth 𝑊 (hz) in time 𝑇 with power constraint 𝑃 (W).

Also, We have 2𝑊𝑇 samples taken 
%
"=

apart.

Then the energy per sample is 3H
"=H

= 3
"=

, and the noise variance 

per sample is G#
"
2𝑊 H

"=H
= G#

"
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The capacity of the Bandlimited Channels
Since the channel capacity is defined as follows,

𝐶 =
1
2
log 1 +

𝑃
𝑁

=
1
2
log 1 +

𝑃
2𝑊
𝑁I
2

=
1
2
log 1 +

𝑃
𝑁I𝑊

𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒

Since there are 2W samples per second,

𝐶 = 𝑊 log(1 +
𝑃

𝑁I𝑊
) 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑
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The capacity of the Bandlimited Channels

A more precise version considers the small fraction of their 

energy outside the bandwidth W.

To consider it, let 𝑊 → ∞. Then, we obtain

𝐶 =
𝑃
𝑁I
log 𝑒 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

2024. 3. 29. 41



Following Topics are skipped…
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Thank You!


