Information Theory Chap 8 & 9

Differential Entropy & Gaussian Channel

Presenter : JinHyundong

Contents

- Chap 8
	- Recap
	- Continuous Random Variable
	- Differential Entropy
- Chap 9
	- Gaussian Channel
	- Gaussian Channel with Constraint
	- Bandlimited Channel

Chap 8

Differential Entropy

Recap : Case of Discrete RV

•
$$
H(X) = -\sum p(x) \log p(x) = -E_p \log p(x)
$$
 for $x \in X$

- $H(X, Y) = -\sum p(x, y) \log p(x, y)$
- $H(Y|X) = \sum p(x)H(Y|X = x) = -\sum \sum p(x, y) \log p(y|x)$
- $H(X, Y) = H(X) + H(Y|X)$
- $D(p||q) = \sum p(x) \log \frac{p(x)}{p(x)}$ $q(x)$

•
$$
I(X; Y) = \sum \sum p(x, y) \log \frac{p(x, y)}{p(x)p(y)}
$$

• Let $P_e = \Pr{\{\hat{X}(Y) \neq X\}}$, then $H(P_e) + P_e \log|\chi| \geq H(X|Y)$

Recap : Case of Discrete RV

- Converge in probability $if \forall \epsilon > 0, Pr\{ |X_n X| > \epsilon \} \rightarrow 0$
- Converge in mean square *if* $E(X_n X)^2 \rightarrow 0$
- Converge almost surely if Pr { lim $n\rightarrow\infty$ $X_n = X = 1$

•
$$
Z_1, ..., Z_n
$$
 are i.i.d. $\sim (\mu, \sigma^2), \overline{Z_n} = \frac{1}{n} \sum Z_i$, $\Pr\{\vert \overline{Z_n} - \mu \vert > \epsilon\} \le \frac{\sigma^2}{n\epsilon^2}$

• If $X_1, X_2, ...$ are i.i.d.~ $p(x)$, then $-\frac{1}{n}$ $\frac{1}{n} \log p(X_1, X_2, ..., X_n) \to H(X)$ in probability.

•
$$
A_{\epsilon}^{(n)} = \{(x_1, ..., x_n) \in \chi^n | 2^{-n(H(X) + \epsilon)} \le p(x_1, ..., x_n) \le 2^{-n(H(X) - \epsilon)}\}
$$

Continuous RV & Density Function

Def

For random variable

& cumulative distribution function $F(x) = Pr(X \le x)$,

If $F(x)$ is continuous, then X is said to be continuous.

If $F(x)$ is absolutely continuous where $F'(x) = f(x)$ and $\int_{-\infty}^{\infty}$ $\int_{-\infty}^{\infty} f(x) = 1$, then $f(x)$ is called the probability density function of X .

Density Function

Expectation of Random Variable

• Discrete

$$
E\big(g(X)\big) = \sum p(x)g(x)
$$

• Continuous

$$
E\big(g(X)\big) = \int_S f(x)g(x)dx
$$

Definition of Differential Entropy

Def

Differential Entropy

$$
h(X) = h(f) = -\int_{S} f(x) \log f(x) dx, \qquad S: supp(X)
$$

Joint Differential Entropy

$$
h(X_1, ..., X_n) = -\int_S f(x_1, ..., x_n) \log f(x_1, ..., x_n) dx_1 ... dx_n
$$

Conditional Differential Entropy

$$
h(X|Y) = -\int f(x, y) \log f(x|y) dx dy
$$

In general $f(x|y) =$ $f(x,y)$ $\frac{f(x,y)}{f(y)}$ holds, thus $h(X|Y) = h(X, Y) - h(Y)$.

Definition of KL-distance and Mutual Information

Def

KL-distance (Relative Entropy)

$$
D(f||g) = \int f \log \frac{f}{g}
$$

Mutual Information (when joint density $f(x, y)$ is given.)

$$
I(X;Y) = \int f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dx dy
$$

In general, $I(X; Y) = h(X) - h(X|Y) = D(f(x, y)||f(x)f(y))$

Relation of Differential & Discrete Entropy

FIGURE 8.1. Quantization of a continuous random variable.

• Divide the range of X into bins of length ∆

• By MVT,
$$
\exists x_i
$$
 such that

$$
f(x_i)\Delta = \int_{i\Delta}^{(i+1)\Delta} f(x)dx
$$

 \rightarrow • Let $X^{\Delta} = x_i$, if $i\Delta \leq X < (i + 1)\Delta$

• Then,
$$
p_i = Pr(X^{\Delta} = x_i) = f(x_i) \Delta
$$

Relation of Differential & Discrete Entropy

Relation of Differential & Discrete Entropy

• Thus, if density $f(x)$ of the RV X is Riemann integrable, then $H(X^{\Delta}) + \log \Delta \rightarrow h(f) = h(X)$ as $\Delta \rightarrow 0$

- FIGURE 8.1. Quantization of a continuous random variable.
- The entropy of an n-bit quantization of a continuous RV X is approximately $h(X) + n$.

General Definition of Mutual Information

• Mutual information of two continuous random variables is the limit of the mutual information between their quatized versions.

$$
I(X^{\Delta}; Y^{\Delta}) = H(X^{\Delta}) - H(X^{\Delta}|Y^{\Delta})
$$

\approx h(X) - log Δ - (h(X|Y) - log Δ)
\n= I(X; Y)

General Definition of Mutual Information

Def

Let χ be the range of a RV X. A partition P of χ is a finite collection of disjoint sets P_i s.t $\bigcup_i P_i = \chi$.

The quantization of X by $\mathcal P$ is the discrete RV defined by $Pr([X]_{\mathcal{P}} = i) = Pr(X \in P_i) =$ P_i $dF(x)$

Mutual Information (when joint density $f(x, y)$ is not given.) $I(X; Y) = \sup I([X]_{\mathcal{P}}; [Y]_{\mathcal{Q}})$ \mathcal{P} ,0

Some Properties

- $D(f||g) \geq 0$ equality holds iff $f = g$ almost everywhere
- I(X; Y) \geq 0 equality holds iff X and Y are independent
- h(X|Y) $\leq h(X)$ equality holds iff X and Y are independent
- $h(X_1, ..., X_n) = \sum_{i=1}^n h(X_i | X_1, ..., X_{i-1})$
- $h(aX) = h(X) + log|a|$

AEP for Continuous Random Variable

Almost same for discrete case :

Let $X_1, ..., X_n$ be a sequence of RV with i.i.d. & density $f(x)$. Then, $-\frac{1}{n}$ $\frac{1}{n}$ log $f(X_1, ..., X_n) \to E[-\log f(X)] = h(X)$ in probability.

Typical set for Continuous Random Variable

Def

For
$$
\epsilon > 0
$$
 and any *n*,
\n
$$
A_{\epsilon}^{(n)} = \left\{ (x_1, ..., x_n) \in S^n : \left| -\frac{1}{n} \log f(x_1, ..., x_n) - h(X) \right| \le \epsilon \right\}
$$
\nSince $X_1, ..., X_n$ are i.i.d. $f(x_1, ..., x_n) = \prod_{i=1}^n f(x_i)$

The volume of a set $A \subset \mathbb{R}^n$ is defined as

$$
Vol(A) = \int_A dx_1 \dots dx_n
$$

Some Properties of the Typical set

•
$$
\Pr(A_{\epsilon}^{(n)}) > 1 - \epsilon
$$
 for sufficiently large *n*

• Vol
$$
(A_{\epsilon}^{(n)}) \leq 2^{n(h(X)+\epsilon)}
$$
 for all *n*

• Vol
$$
(A_{\epsilon}^{(n)}) \ge (1 - \epsilon)2^{n(h(X) - \epsilon)}
$$
 for sufficiently large *n*

Entropy with Normal Distribution

Let
$$
X \sim \phi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-x^2}{2\sigma^2}}
$$

\n
$$
h(\phi) = -\int \phi \ln \phi
$$
\n
$$
= -\int \phi(x) \left[-\frac{x^2}{2\sigma^2} - \ln \sqrt{2\pi\sigma^2} \right]
$$
\n
$$
= \frac{EX^2}{2\sigma^2} + \frac{1}{2} \ln 2\pi \sigma^2
$$
\n
$$
= \frac{1}{2} + \frac{1}{2} \ln 2\pi \sigma^2
$$
\n
$$
= \frac{1}{2} \ln 2\pi e \sigma^2
$$

Chap 9

Gaussian Channel

Gaussian Channel

FIGURE 9.1. Gaussian channel.

The most important continuous alphabet channel.

 X_i : input $Z_i \sim \mathcal{N}(0, N)$: i.i.d. gaussian noise $Y_i = X_i + Z_i$ where *i* is discrete time

Gaussian Channel without Noise

 \rightarrow Y_i

FIGURE 9.1. Gaussian channel.

The capacity of the gaussian channel without noise is infinity since X can take on any real value and transmit it with no error.

Gaussian Channel without constraint

What happens there exists a noise $Z_i \sim \mathcal{N}(0, N)$?

FIGURE 9.1. Gaussian channel.

Gaussian Channel without constraint

FIGURE 9.1. Gaussian channel.

We can choose an infinite subset of inputs arbitrarily far apart, so that they are distinguishable at the output with arbitrarily small probability of error.

⇒ Without constraint, it still has infinity capacity!

Gaussian Channel with constraint

FIGURE 9.1. Gaussian channel.

The most common limitation on input is an average power constraint. 1 $\frac{1}{n}\sum x_i^2 \leq P : \text{power constraint}$

Also, we use quantization to convert the Gaussian channel into a discrete channel which is easier to process.

Def

The information capacity of the Gaussian channel with power constraint P is given as

$$
C = \max_{f(x): EX^2 \le P} I(X;Y)
$$

$$
C = \max_{f(x): EX^2 \le P} I(X;Y)
$$

\n
$$
I(X;Y) = h(Y) - h(Y|X)
$$

\n
$$
= h(Y) - h(X+Z|X)
$$

\n
$$
= h(Y) - h(Z|X)
$$

\n
$$
= h(Y) - h(Z)
$$

Here, $h(Z) =$ 1 $\frac{1}{2} \log 2 \pi eN$ as calculated in previous chapter.

 $EY^2 = E(X+Z)^2 = EX^2 + 2EXEZ + EZ^2 \le P + N$

because $X \& Z \sim \mathcal{N}(0, N)$ are independent and $EX^2 \leq P$

However, for a fixed variance, the normal distribution maximizes the entropy. (Theorem 8.6.5)

Thus,
$$
h(Y) \leq \frac{1}{2} \log 2\pi e (EY^2)
$$

By combining the previous results,

$$
I(X;Y) = h(Y) - h(Z)
$$

\n
$$
\leq \frac{1}{2} \log 2\pi e (EY^2) - \frac{1}{2} \log 2\pi eN
$$

\n
$$
\leq \frac{1}{2} \log 2\pi e (P + N) - \frac{1}{2} \log 2\pi eN
$$

\n
$$
= \frac{1}{2} \log \left(1 + \frac{P}{N}\right)
$$

Thus, the information capacity of the Gaussian channel is

$$
C = \max_{EX^2 \le P} I(X;Y) = \frac{1}{2} \log \left(1 + \frac{P}{N} \right)
$$

The maximum is attained when $X \sim \mathcal{N}(0, P)$

The definitions for (M, n) code, the rate of error, and achievable are almost same as in chapter 7. Please check the textbook.

The Bandlimited Channels (Continuous Time)

The commonly used channel like a radio network or a telephone line is a bandlimited channel with white noise.

$$
Y(t) = (X(t) + Z(t)) * h(t)
$$

Here, $h(t)$ is the impulse response of a low pass filter and ∗ is the convolution operator.

Representation Theorem

Theorem 9.3.1 by Nyquist and Shannon

 $f(t)$ is bandlimited to W (i.e. the spectrum of the function is 0 for all frequencies greater than W).

Then, the $f(t)$ is completely determined by samples of the function spaced $\frac{1}{2}$ $\frac{1}{2W}$ seconds apart.

Let $F(\omega)$ be the Fourier transform of $f(t)$. Then,

$$
f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega
$$

$$
= \frac{1}{2\pi} \int_{-2\pi W}^{2\pi W} F(\omega) e^{i\omega t} d\omega
$$

If we consider samples spaced $\frac{1}{2}$ $\frac{1}{2W}$ seconds apart, \int \overline{n} 2*W* = 1 $\frac{1}{2\pi}$ $\int_{-2\pi W}$ $2\pi W$ $F(\omega)e$ $i\omega \frac{n}{2!}$ $\overline{z\overline{w}}d\omega$

Def (continuous Fourier Series)

Let $f : [a, b] \rightarrow \mathbb{C}$ be an integrable function with $L = b - a$, then the k-th Fourier coefficient of f is defined by

$$
a_k = \frac{1}{L} \int_a^b e^{-\frac{2\pi}{L} ikx} f(x) dx
$$

The Fourier series of f is given by formally $f(x)$ ~ $\sum a_k e$ 2π $\frac{d}{L}$ ikx

$$
f\left(-\frac{n}{2W}\right) = \frac{1}{2\pi} \int_{-2\pi W}^{2\pi W} F(\omega) e^{-i\omega \frac{n}{2W}} d\omega
$$

From the above equation, right side is the Fourier coefficient of $F(\omega)$.

Thus, we can calculate the Fourier coefficients of $F(\omega)$ from the sampled points.

After that, By using Fourier inversion, we can determine the original function $f(t)$.

When we only consider the real part, the given function can be explicitly represented in terms of its samples as following:

$$
f(t) = g(t) = \sum_{n = -\infty}^{\infty} f\left(\frac{n}{2W}\right) sinc\left(t - \frac{n}{2W}\right)
$$

where
$$
sinc(t) = \frac{\sin(2\pi Wt)}{2\pi Wt}
$$

By the Nyquist-Shannon sampling theorem, a bandlimited function has only 2W degrees of freedom per second.

Also, we can say that the most of the power is in bandwidth W and in a finite time interval (0, T).

Then, we can describe any function with 2TW orthonormal bases as almost timelimited & almost bandlimited.

Let the noise has power spectral density $\frac{N_0}{2}$ $\frac{{\rm v}_0}{2}$ (W/hz) and bandwidth W (hz) in time T with power constraint P (W).

Also, We have 2WT samples taken $\frac{1}{2}$ $\frac{1}{2W}$ apart.

Then the energy per sample is $\frac{PT}{2H}$ $2WT$ = \overline{P} $\frac{P}{2W'}$ and the noise variance per sample is $\frac{N_0}{2}$ $\overline{2}$ $2W\frac{T}{2M}$ $2WT$ = N_0 $\overline{2}$

Since the channel capacity is defined as follows,

$$
C = \frac{1}{2}\log\left(1 + \frac{P}{N}\right)
$$

= $\frac{1}{2}\log\left(1 + \frac{\frac{P}{2W}}{\frac{N_0}{2}}\right)$
= $\frac{1}{2}\log\left(1 + \frac{P}{N_0W}\right)$ bits per sample

Since there are 2W samples per second,

$$
C = W \log(1 + \frac{P}{N_0 W}) \text{ bits per second}
$$

A more precise version considers the small fraction of their energy outside the bandwidth W.

To consider it, let $W \rightarrow \infty$. Then, we obtain

$$
C = \frac{P}{N_0} \log e
$$
 bits per second

Following Topics are skipped…

FIGURE 9.3. Parallel Gaussian channels.

Thank You!