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[Rate] Define rate 𝑅 as the average number of bits per symbol for representing 𝑋𝑛.

encoder

Situation

𝑋𝑛

𝑋1, … , 𝑋𝑛~𝑝 𝑥 i. i. d.

decoder ෠𝑋𝑛𝑓𝑛 𝑥𝑛 ∈ 1,… , 2𝑛𝑅

Intuitively, we lose information as 𝑅 decreases

Encode 4 pixels using a single pixel

𝑅 = 1/4
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[Rate] Recall that, in the channel coding theorem, the definition of the rate 𝑅 is

encoder

Situation

𝑋𝑛

𝑋1, … , 𝑋𝑛~𝑝 𝑥 i. i. d.

decoder ෠𝑋𝑛𝑓𝑛 𝑥𝑛 ∈ 1,… , 2𝑛𝑅

𝑅 =
log𝑀

𝑛
,

where 𝑀 is the number of possible values of the channel input. Rearranging gives

𝑀 = 2𝑛𝑅 .
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encoder

Situation (lossy encoding)

𝑋𝑛

𝑋1, … , 𝑋𝑛~𝑝 𝑥 i. i. d.

decoder ෠𝑋𝑛𝑓𝑛 𝑥𝑛 ∈ 1,… , 2𝑛𝑅

Situation (Channel Coding Thm)

encoder decoder
Discrete

Memoryless
Channel

𝑋𝑛: 1, … ,𝑀 → 𝒳 𝑌𝑛: 𝒴 → 1,… ,𝑀

Fixed!

𝑅 is a parameter
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[Distortion Code] Given a rate 𝑅, a function pair 𝑓𝑛, 𝑔𝑛 where

encoder

Situation

𝑋𝑛

𝑋1, … , 𝑋𝑛~𝑝 𝑥 i. i. d.

decoder ෠𝑋𝑛𝑓𝑛 𝑥𝑛 ∈ 1,… , 2𝑛𝑅

the encoding function 𝑓𝑛: 𝒳
𝑛 → 1,2, … , 2𝑛𝑅 is a 2𝑛𝑅 , 𝑛 -rate distortion code,

the decoding function 𝑔𝑛: 1,2, … , 2𝑛𝑅 → ෡𝒳𝑛 i.e., the lossy encoding scheme.

1

2𝑛𝑅

⋯

⋯
𝑘

𝒳𝑛 ෡𝒳𝑛𝑓𝑛 𝑔𝑛

𝑓−1 𝑘
“assignment region”

𝑔 𝑘 ∣ 𝑘 = 1, …2𝑛𝑅

“codebook”
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[Distortion] Define distortion function 𝑑:𝒳 × ෡𝒳 → ℝ+:

Situation

represents how different ෠𝑋 is from 𝑋

options include Hamming distortion

𝑑 𝑥, ො𝑥 = 0 ⇔ 𝑥 = ො𝑥

Or the squared-error distortion

𝑑 𝑥, ො𝑥 = 𝑥 − ො𝑥 2.

1

2𝑛𝑅

⋯

⋯
𝑘

𝑓𝑛 𝑔𝑛𝒳𝑛 ෡𝒳𝑛
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[Distortion between sequences] The distortion between 𝑥𝑛 and ො𝑥𝑛 is

Situation

𝑑 𝑥𝑛, ො𝑥𝑛 =
1

𝑛
෍

𝑖=1

𝑛

𝑑 𝑥𝑖 , ො𝑥𝑖 .

[Distortion of a code] The distortion 𝐷 of a 2𝑛𝑅 , 𝑛 -rate distortion code 𝑓𝑛, 𝑔𝑛  is

𝐷 = 𝔼 𝑑 𝑋𝑛, 𝑔𝑛 𝑓𝑛 𝑋𝑛 ,

the expected distortion over all 𝑋𝑛 values.

1

2𝑛𝑅

⋯

⋯
𝑘

𝒳𝑛 ෡𝒳𝑛𝑓𝑛 𝑔𝑛
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[Achievability] The rate-distortion pair 𝑅,𝐷  is achievable if there exists a sequence
of 2𝑛𝑅 , 𝑛 -rate distortion codes 𝑓𝑛, 𝑔𝑛  such that

Situation

lim
𝑛→∞

𝔼 𝑑 𝑋𝑛, 𝑔𝑛 𝑓𝑛 𝑋𝑛 ≤ 𝐷.

encoder𝑋𝑛

𝑋1, … , 𝑋𝑛~𝑝 𝑥 i. i. d.

decoder ෠𝑋𝑛𝑓𝑛 𝑥𝑛 ∈ 1,… , 2𝑛𝑅

[Rate Distortion Function] The rate distortion function 𝑅 𝐷  gives the infimum of rates 𝑅
such that 𝑅,𝐷  is in the closure of the set of achievable rate distortion pairs.
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Def The information rate distortion function 𝑅 𝐼 𝐷  is defined as the following:

min
𝑝 𝑥, ො𝑥 :σ 𝑥,ෝ𝑥 𝑝 𝑥 𝑝 ො𝑥 𝑥 𝑑 𝑥, ො𝑥 ≤𝐷

𝐼 𝑋; ෠𝑋

i.e., the minimum mutual information over all joint distributions 𝑝 𝑥, ො𝑥  with total
distortion at most 𝐷. 

Thm 10.2.1 The minimum achievable rate at distortion 𝐷 is exactly

𝑅 𝐷 = 𝑅 𝐼 𝐷 .

[part 1] 𝑅 ≥ 𝑅 𝐼 𝐷  for any 2𝑛𝑅 , 𝑛 -rate distortion code with distortion ≤ 𝐷.

[part 2] 𝑅 𝐼 𝐷 ,𝐷 is achievable.
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Prove 𝑅 ≥ 𝑅 𝐼 𝐷  for any 2𝑛𝑅 , 𝑛 -rate distortion code with distortion ≤ 𝐷.

Lem 𝑅 𝐼 𝐷  is convex and non-increasing in 𝐷.

[non-increasing] if 𝐷 increases, more joint distributions 𝑝 𝑥, ො𝑥  should be considered;

min
𝑝 𝑥, ො𝑥 :σ 𝑥,ෝ𝑥 𝑝 𝑥 𝑝 ො𝑥 𝑥 𝑑 𝑥, ො𝑥 ≤𝐷

𝐼 𝑋; ෠𝑋

Thus, 𝑅 𝐼 𝐷  is non-increasing in 𝐷.
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Prove 𝑅 ≥ 𝑅 𝐼 𝐷  for any 2𝑛𝑅 , 𝑛 -rate distortion code with distortion ≤ 𝐷.

Lem 𝑅 𝐼 𝐷  is convex and non-increasing in 𝐷.

[convexity] First, rewrite

Let 𝑝1 𝑥, ො𝑥 = 𝑝 𝑥 𝑝1 ො𝑥 𝑥  and 𝑝2 𝑥, ො𝑥 = 𝑝 𝑥 𝑝2 ො𝑥 𝑥  be their distributions, resp.

Now, consider 𝑅1, 𝐷1  and 𝑅2, 𝐷2 , both on the rate distortion curve.

𝐷 = 𝔼 𝑑 𝑋𝑛, 𝑔𝑛 𝑓𝑛 𝑋𝑛 = ෍

𝑥, ො𝑥

𝑝 𝑥𝑛, ො𝑥𝑛 𝑑 𝑥𝑛, ො𝑥𝑛

i.e., 𝐷 is linear in 𝑝 ො𝑥𝑛 ∣ 𝑥𝑛 .

Let 𝑝𝜆 = 𝜆𝑝1 + 1 − 𝜆 𝑝2 and we have 𝐷𝜆 = 𝜆𝐷1 + 1 − 𝜆 𝐷2 by linearity in 𝑝 ො𝑥𝑛 ∣ 𝑥𝑛 .
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Prove 𝑅 ≥ 𝑅 𝐼 𝐷  for any 2𝑛𝑅 , 𝑛 -rate distortion code with distortion ≤ 𝐷.

Lem 𝑅 𝐼 𝐷  is convex and non-increasing in 𝐷.

[convexity-cont.] Recall that 𝐼 𝑋; ෠𝑋  is convex (Thm. 2.7.4)

𝑅 𝐼 𝐷𝜆 ≤ 𝐼𝑝𝜆 𝑋; ෠𝑋

≤ 𝜆𝐼𝑝1 𝑋; ෠𝑋 + 1 − 𝜆 𝐼𝑝2 𝑋; ෠𝑋

= 𝜆𝑅 𝐷1 + 1 − 𝜆 𝑅 𝐷2

Thus, 𝑅 𝐼 𝐷  is convex in 𝐷.

𝑅1, 𝐷1

𝑅2, 𝐷2
𝐷𝜆
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Prove 𝑅 ≥ 𝑅 𝐼 𝐷  for any 2𝑛𝑅 , 𝑛 -rate distortion code with distortion ≤ 𝐷.

Follow the series of inequalities:

𝑛𝑅 ≥ 𝐻 𝑓𝑛 𝑋𝑛 [Property of 𝐻] 𝐻 𝑋 ≤ log 𝒳

≥ 𝐻 𝑓𝑛 𝑋𝑛 − 𝐻 𝑓𝑛 𝑋𝑛 ∣ 𝑋𝑛

= 𝐼 𝑋𝑛; 𝑓𝑛 𝑋𝑛 [Definition of mutual information]

≥ 𝐼 𝑋𝑛; ෠𝑋𝑛 [Data processing inequality]

= 𝐻 𝑋𝑛 −𝐻 𝑋𝑛 ∣ ෠𝑋𝑛

=෍

𝑖=1

𝑛

𝐻 𝑋𝑖 −෍

𝑖=1

𝑛

𝐻 𝑋𝑖 ∣ ෠𝑋
𝑛, 𝑋𝑖−1, … , 𝑋1

[𝑋𝑖’s independent]
[Chain rule]
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Prove 𝑅 ≥ 𝑅 𝐼 𝐷  for any 2𝑛𝑅 , 𝑛 -rate distortion code with distortion ≤ 𝐷.

Follow the series of inequalities:

[Conditioning reduces entropy]

𝑛𝑅 ≥෍

𝑖=1

𝑛

𝐻 𝑋𝑖 −෍

𝑖=1

𝑛

𝐻 𝑋𝑖 ∣ ෠𝑋
𝑛, 𝑋𝑖−1, … , 𝑋1

≥෍

𝑖=1

𝑛

𝐻 𝑋𝑖 −෍

𝑖=1

𝑛

𝐻 𝑋𝑖 ∣ ෠𝑋𝑖

=෍

𝑖=1

𝑛

𝐼 𝑋𝑖; ෠𝑋𝑖
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Prove 𝑅 ≥ 𝑅 𝐼 𝐷  for any 2𝑛𝑅 , 𝑛 -rate distortion code with distortion ≤ 𝐷.

Follow the series of inequalities:

[Definition of 𝑅 𝐼 𝐷 ]

𝑛𝑅 ≥෍

𝑖=1

𝑛

𝐼 𝑋𝑖; ෠𝑋𝑖

≥෍

𝑖=1

𝑛

𝑅 𝐼 𝔼 𝑑 𝑋𝑖 , ෠𝑋𝑖

≥ 𝑛𝑅 𝐼
1

𝑛
෍

𝑖=1

𝑛

𝔼 𝑑 𝑋𝑖 , ෠𝑋𝑖 [Convexity of 𝑅 𝐼 𝐷 ]
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Prove 𝑅 ≥ 𝑅 𝐼 𝐷  for any 2𝑛𝑅 , 𝑛 -rate distortion code with distortion ≤ 𝐷.

Follow the series of inequalities:

[Definition of 𝑑 𝑋, ෠𝑋 ]

𝑛𝑅 ≥ 𝑛𝑅 𝐼
1

𝑛
෍

𝑖=1

𝑛

𝔼 𝑑 𝑋𝑖 , ෠𝑋𝑖

= 𝑛𝑅 𝐼 𝔼 𝑑 𝑋, ෠𝑋

[𝑅 𝐼 𝐷 non-increasing]
≥ 𝑛𝑅 𝐼 𝐷 [𝔼 𝑑 𝑋, ෠𝑋 ≤ 𝐷 from condition]

Therefore, we have 𝑅 ≥ 𝑅 𝐼 𝐷  for any 2𝑛𝑅 , 𝑛 -rate distortion code with distortion ≤ 𝐷.
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Prove 𝑅 𝐼 𝐷 ,𝐷  is achievable.

For any 𝛿 > 0, there exists a rate distortion code with rate 𝑅 and distortion ≤ 𝐷 + 𝛿.Claim

Technical; uses the distortion 𝜖-typicality to bound probabilitiesProof

−
1

𝑛
log 𝑝 𝑥𝑛 − 𝐻 𝑋 < 𝜖,

−
1

𝑛
log 𝑝 ො𝑥𝑛 − 𝐻 ෠𝑋 < 𝜖,

−
1

𝑛
log 𝑝 𝑥𝑛, ො𝑥𝑛 − 𝐻 𝑋, ෠𝑋 < 𝜖,

𝑑 𝑥𝑛, ො𝑥𝑛 − 𝔼 𝑑 𝑋, ෠𝑋 < 𝜖.
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Prob Compute the rate distortion function

𝑅 𝐷 = min
𝑞 ො𝑥∣𝑥 :σ 𝑥,ෝ𝑥 𝑝 𝑥 𝑞 ො𝑥 𝑥 𝑑 𝑥, ො𝑥 ≤𝐷

𝐼 𝑋; ෠𝑋 .

Recall that 𝐼 𝑋; ෠𝑋  is convex; the problem is a minimization of a convex function

over the convex set of all 𝑞 𝑥 ∣ ො𝑥 ≥ 0 satisfying the constraints

σ ො𝑥 𝑞 ො𝑥 ∣ 𝑥 = 1 for all 𝑥,

σ 𝑥, ො𝑥 𝑝 𝑥 𝑞 ො𝑥 ∣ 𝑥 𝑑 𝑥, ො𝑥 ≤ 𝐷.

Reformulate the problem using Lagrange multipliers and we get…
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Prob Optimize the following functional:

𝐽 𝑞 =෍

𝑥

෍

ො𝑥

𝑝 𝑥 𝑞 ො𝑥 𝑥 log
𝑞 ො𝑥 𝑥

σ𝑥 𝑝 𝑥 𝑞 ො𝑥 𝑥

+𝜆෍

𝑥

෍

ො𝑥

𝑝 𝑥 𝑞 ො𝑥 𝑥 𝑑 𝑥, ො𝑥

+෍

𝑥

𝜈 𝑥 ෍

ො𝑥

𝑞 ො𝑥 𝑥 [conditional probability]

We want to know 𝑞 ො𝑥 = σ𝑥 𝑝 𝑥 𝑞 ො𝑥 ∣ 𝑥 values for all ො𝑥 ∈ ෡𝒳. 
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Sol An optimal solution gives us for all ො𝑥 ∈ ෡𝒳,

෍

𝑥

𝑝 𝑥 𝑒−𝜆𝑑 𝑥, ො𝑥

σ ො𝑥′ 𝑞 ො𝑥′ 𝑒−𝜆𝑑 𝑥, ො𝑥′
= 1.

From the definition of distortion, we know

෍

𝑥, ො𝑥

𝑝 𝑥 𝑞 ො𝑥 ∣ 𝑥 𝑑 𝑥, ො𝑥 .

Now we can solve for 𝑞 ො𝑥 and 𝜆.

However, we usually have constraints on 𝑞 ො𝑥 …
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Lem Let 𝑝 𝑥 𝑝 𝑦 𝑥  be a given joint distribution. Then,

𝐷 𝑝 𝑥 𝑝 𝑦 𝑥 ||𝑝 𝑥 𝑟∗ 𝑦 = min
𝑟 𝑦

𝐷 𝑝 𝑥 𝑝 𝑦 𝑥 ||𝑝 𝑥 𝑟 𝑦

where 𝑟∗ 𝑦 = σ𝑥 𝑝 𝑥 𝑝 𝑦 𝑥 .

Subtract LHS from 𝐷 𝑝 𝑥 𝑝 𝑦 𝑥 ||𝑝 𝑥 𝑟 𝑦  for any 𝑟 𝑦  to get ≥ 0.Proof
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Rewrite the rate distortion function (again)

𝑅 𝐷 = min
𝑞 ො𝑥∣𝑥 :σ 𝑥,ෝ𝑥 𝑝 𝑥 𝑞 ො𝑥 𝑥 𝑑 𝑥, ො𝑥 ≤𝐷

𝐼 𝑋; ෠𝑋

= min
𝑞 ො𝑥∣𝑥 :σ 𝑥,ෝ𝑥 𝑝 𝑥 𝑞 ො𝑥 𝑥 𝑑 𝑥, ො𝑥 ≤𝐷

𝐷 𝑝 𝑥 𝑞 ො𝑥 ∣ 𝑥 ||𝑝 𝑥 𝑞 ො𝑥

Recall that 𝑞 ො𝑥 = σ𝑥 𝑞 ො𝑥, 𝑥 = σ𝑥 𝑝 𝑥 𝑞 ො𝑥 ∣ 𝑥 = 𝑟∗ 𝑦 from the prev. lemma.

= min
𝑟 ො𝑥

min
𝑞 ො𝑥∣𝑥 :σ 𝑥,ෝ𝑥 𝑝 𝑥 𝑞 ො𝑥 𝑥 𝑑 𝑥, ො𝑥 ≤𝐷

𝐷 𝑝 𝑥 𝑞 ො𝑥 ∣ 𝑥 ||𝑝 𝑥 𝑟 ො𝑥

Minimize B Minimize A
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Alg [Blahut-Arimoto]

Given: distortion 𝐷, input distribution 𝑝 𝑥  where 𝑋𝑖’s are i.i.d. sampled from

Goal: Compute the conditional probability 𝑞 ො𝑥 𝑥  that minimizes 𝑅 𝐷 .

Choose initial 𝜆 and ෡𝒳 values 𝑟 ො𝑥 .

Repeat until convergence:

Minimize A by solving for all 𝑥, ො𝑥 ∈ 𝒳 × ෡𝒳

𝑞 ො𝑥 ∣ 𝑥 =
𝑟 ො𝑥 𝑒−𝜆𝑑 𝑥, ො𝑥

σ ො𝑥 𝑟 ො𝑥 𝑒−𝜆𝑑 𝑥, ො𝑥

Minimize B by computing for all ො𝑥 ∈ ෡𝒳

𝑟 ො𝑥 =෍

𝑥

𝑝 𝑥 𝑞 ො𝑥 ∣ 𝑥

Minimize A

Minimize B

Optimization w/
Lagrangian multiplier

Lemma
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Thm [Csiszár] The Blahut-Arimoto algorithm converges to a distribution that gives rate 𝑅 𝐷 .

Higher 𝜆 means less compression

Situation

Convex set
for 𝑟 ො𝑥

Convex set
for 𝑞 ො𝑥 ∣ 𝑥

Initial 𝑟 ො𝑥

⋯

Similar algorithm used for computing channel capacity

Remark
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Thm 10.4.1 For a discrete memoryless channel with capacity 𝐶,
distortion rate 𝐷 is achievable if and only if 𝐶 > 𝑅 𝐷 .

Thm 10.3.1 The rate distortion function of a Bernoulli(𝑝) source
w/ Hamming distortion is given by

𝑅 𝐷 = ൝
𝐻 𝑝 − 𝐻 𝐷 ,

0,

0 ≤ 𝐷 ≤ min 𝑝, 1 − 𝑝 ,

𝐷 > min 𝑝, 1 − 𝑝 .

Thm 10.3.2 The rate distortion function of a 𝒩 0, 𝜎2 source
w/ squared-error distortion is given by

𝑅 𝐷 = ൞
1

2
log

𝜎2

𝐷
,

0,

0 ≤ 𝐷 ≤ 𝜎2,

𝐷 > 𝜎2.
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No consensus on a “good” distortion metric for human perception

What if the input is not i.i.d. sampled from 𝒳?
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