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%R Rate and Distortion %R

Situation

Xn —— | encoder | (™) €LY, ---»ZnRE decoder | —» X?’l

Xy, e, Xp~p(x) i.i. d.

[ ] [Rate] Define rate R as the average number of bits per symbol for representing X™.

> Intuitively, we lose information as R decreases

Encode 4 pixels using a single pixel

R=1/4




Situation

I I
%8 Rate and Distortion &3
X?’l_» encoder fu(x™) E{1,---,27“?}> decoder X’n

Xq, o, Xp~p(x) i.i. d.

[] [Rate] Recall that, in the channel coding theorem, the definition of the rate R is

log M
n

R =

)

where M is the number of possible values of the channel input. Rearranging gives

M = 2"k,




%R Rate and Distortion %R

Situation (lossy encoding) 4' R is a parameter

T~ -

Xn —— | encoder | (™) €LY, ---»ZnRE decoder | —» X?’l

Xy, e, Xp~p(x) i.i. d.

Situation (Channel Coding Thm)

. Discrete .
encoder X1, M} - X Memoryless Y'Y -1{,..,Mj decoder

> Channel
N

Fixed!




%8 Rate and Distortion &3

Situation

XTl —— | encoder | (™) €LY, ---»ZnRi decoder | —» Xn

Xq, o, Xp~p(x) i.i. d.

[] [Distortion Code] Given a rate R, a function pair (f,,, gn) Where

i the encoding function f,,;: X™ - {1,2, ..., 2"%} is a (2™% n)-rate distortion code,
the decoding function g,:{1,2, ..., 2"k} - X"

® \
e o
{glk) | k=1,..2"%}
. o ‘codebook”

..e., the lossy encoding scheme.

Xn fn >

"assignment region”



%R Rate and Distortion %R

Situation Xn \ /xn

==

[] [Distortion] Define distortion function d: X x X - R™:

[Ili represents how different X is from X
options include Hamming distortion

[d(x, %) = 0] & [x = %]
[> Or the squared-error distortion

d(x,%) = (x — %)>.




%8 Rate and Distortion &3

Situation n =
X fn > O —— n
1 /‘ X
i ¢

[ ] [Distortion between sequences] The distortion between x™ and X" Is

n
1
d(x™ X") = EZ d(x;, X;) .
i=1

[ 1 [Distortion of a code] The distortion D of a (2™%,n)-rate distortion code (f;, g,,) is

= 5[4 on ).

the expected distortion over all X™ values.



%8 Rate and Distortion &3

Situation

XTL —— | encoder | (™) €LY, ---»ZnRz decoder | —» Xn

Xq, o, Xp~p(x) i.i. d.

L1 [Achievability] The rate-distortion pair (R, D) is achievable if there exists a sequence
of (2™, n)-rate distortion codes (f,,, g,) such that

lim E [d (X", g (f,(X™))| < D.

n—00

[1 [Rate Distortion Function] The rate distortion function R(D) gives the infimum of rates R
such that (R, D) is in the closure of the set of achievable rate distortion pairs.



%8 The Information Rate Distortion Function &&

Def | The information rate distortion function RV (D) is defined as the following:

min _ | (X ; X )
p(x,2):% x 2) p(x)p( X|x )d(x,2)<D

.e., the minimum mutual information over all joint distributions p(x, X) with total
distortion at most D.

Thm 10.2.1 | The minimum achievable rate at distortion D is exactly

R(D) = RD(D).

E [part 1] R = RY(D) for any (2%, n)-rate distortion code with distortion < D.

[part 2] (RYW(D), D) is achievable.
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&8 The Minimum Achievable Rate for Distortion &3

Prove| R = R (D) for any (2™, n)-rate distortion code with distortion < D.

Lem | RW(D) is convex and non-increasing in D.

él [non-increasing] if D increases, more joint distributions p(x,X) should be considered;

min _ | (X ; X )
P(x,2): 2y 2) p(x)p( X|x )d(x,2)<D

Thus, RW(D) is non-increasing in D.



&8 The Minimum Achievable Rate for Distortion &3

Prove

Lem

R = RU(D) for any (28, n)-rate distortion code with distortion < D.

RW(D) is convex and non-increasing in D.

él [convexity] First, rewrite

D =E[d(X" .(fuX™))] = ) pC" #0d@m, 2™

(x,%)

l.e, D is linear in p(x™ | x™).

Now, consider (R, D;) and (R,, D,), both on the rate distortion curve.
Let p(x,X) = p(x)p.(X | x) and p,(x,X) = p(x)p,(X | x) be their distributions, resp.

Let p; = Ap; + (1 — D)p, and we have D; = AD; + (1 — A)D, by linearity in p(x™ | x™).
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&8 The Minimum Achievable Rate for Distortion &3

Prove| R = R (D) for any (2™, n)-rate distortion code with distortion < D.

Lem | RW(D) is convex and non-increasing in D.

él [convexity-cont.] Recall that I(X; X) is convex (Thm. 2.7.4)

: RD(D;) < L, (X; X)

(RllDl)

<AL, (X;X)+ (1 - DI, (X; X)

DAMZ) = AR(D;) + (1 — A)R(D,)

>

Thus, RY(D) is convex in D.
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&8 The Minimum Achievable Rate for Distortion &3

Prove| R = R (D) for any (2™, n)-rate distortion code with distortion < D.

él Follow the series of inequalities:

nR > H(fn (Xn)) ........................................ [Property of H] H(X) < log|X]|
> H(f,(X™) — H(f,(X™) | X™)
— ](Xn; I (Xn)) ------------------------------ [Definition of mutual information]
> I(Xn; )?Tl) ............................................. [Data processing inequality]

= H(X™) — H(X" | X™)

ZH(X) ZH(X 7 K 1) MG



&8 The Minimum Achievable Rate for Distortion &3

Prove

R = RU(D) for any (28, n)-rate distortion code with distortion < D.

él Follow the series of inequalities:

n n
nR > z H(X;) — z H(X; | X" X;_1, ..., X1)
=1 =1

\Y

D= 1M

=
[
—

I(Xi; Xl)
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&8 The Minimum Achievable Rate for Distortion &3

Prove

R = RU(D) for any (28, n)-rate distortion code with distortion < D.

él Follow the series of inequalities:

n

nR > 2 1(X; X;)
=1
n

> z RO(E[d(X, R)]) e s

=1

n
1 ~
= TLR(I) EZ(E[d(XL,XL)]) - [Convexity of RO(D)]
=1
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&8 The Minimum Achievable Rate for Distortion &3

Prove| R = R (D) for any (2™, n)-rate distortion code with distortion < D.

H] Follow the series of inequalities:
n
| N
nk 2 nRO (= % (E[d(X;, %)])
=1

TLR (I) (IE [d (X’ )?)]) ................................ 'Definition of d(X, )?)]

[RD(D) non-increasing]
[E[d(X,X)] < D from condition]

e ) AN () R ——

[1 Therefore, we have R = R(D) for any (2™, n)-rate distortion code with distortion < D.
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Prove

Clai

Im

Proof

&8 The Minimum Achievable Rate for Distortion &3

(RY(D), D) is achievable.
For any § > 0, there exists a rate distortion code with rate R and distortion < D + 4.

Technical; uses the distortion e-typicality to bound probabilities

[:I> ——logp(x™ —H(X)| <,

[> —%logp(a?") —H(X)| <e

[> —%logp(x",a’c‘") - H(X,)?)‘ < €,

> d(x™ 2™ — E|d(X, X)]| <e.
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%8 Characterizing the Rate Distortion Function &g

Prob | Compute the rate distortion function

R(D) = min _ I(X;X).
q(X1): 2 %) p(x)q( X|x )d(x,2)<D

[1 Recall that I(X; X) is convex; the problem is a minimization of a convex function
over the convex set of all g(x | X) = 0 satisfying the constraints

E Yoq®1x) =1 forall x,
Yy PX)g® 1 x)d(x, %) < D.

[ 1 Reformulate the problem using Lagrange multipliers and we get...
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%8 Characterizing the Rate Distortion Function &g

Prob | Optimize the following functional:

U\ . q(X | x)
OF %%pmq(x | x)log g o s

+AZ Z p(x)q(X | x)d(x,Xx)

_|_ 2 V(x) z q( 55 | X ) ...................... [conditional probab|l|ty]

1 We want to know ¢(%) =Y, p(x)q(% | x) values for all x € X.

20



%8 Characterizing the Rate Distortion Function &g

Sol | An optimal solution gives us for all £ € X,
—Ad(x,X
p(x)e~ A0
51 p—Ad(x,%'
~ ZQ'Q(X e ~Adxx)

[ 1 From the definition of distortion, we know

z p(x)g(X | x)d(x,Xx).

(x,%)

[ 1 Now we can solve for g(x) and A.

L1 However, we usually have constraints on g(%)...
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%8 Computing the Rate Distortion Function &5

Lem | Let p(x)p(y | x) be a given joint distribution. Then,

D(p()p(y | x)|lp()r(y)) = gr%;gD(p(x)p(y | )| ()7 (1))

where 7*(y) = X, p()p(y | x).

Proof| Subtract LHS from D(p(x)p(y | x)||p(x)r(y)) for any r(y) to get > 0.




%8 Computing the Rate Distortion Function &5

|
R(D) =

Rewrite| the rate distortion function (again)

min I(X;)?)

a(X1%): X 2) p(x)q( X|x)d(x,2)<D

min D(p(x)q® | ©)|lp(x)q(2))

q(X1%): X %) p(x)q( X|x)d(x,2)<D

[ ] Recall that q(%) =Y, q&,x) =Y, p(x)q(xX | x) =r"(y) from the prev. lemma.

= min

min D(p(x)q(& 1 2)||p(x)r(2))

IT(D?)I clz(p?lx):z(xﬁ) p(x)q(X|x )d(x,y?)SII)

Minimize B

iz o

23



%8 Computing the Rate Distortion Function &5

Alg [Blahut-Arimoto]

E Choose initial 2 and |X| values r(%).

Repeat until convergence:

[] by solving for all (x,%) € X x X
7‘(56\) e—/’[d(x,x)

Given: distortion D, input distribution p(x) where X;'s are i.i.d. sampled from
Goal: Compute the conditional probability q(x | x) that minimizes R(D).

Optimization w/
Lagrangian multiplier

qxX | x) =

1 | Minimize B| by computing for all £ € X

r@® =) p(q® 1

Zf 7‘(56\) e—d (x,X)

! Lemma

24



%8 Computing the Rate Distortion Function &5

Thm [Csiszar] | The Blahut-Arimoto algorithm converges to a distribution that gives rate R(D).

Situation
@ M ./\Convex set
M for CI(D/C\ | x)
Convex set
for r(x)
Remark

Higher 4 means less compression

Similar algorithm used for computing channel capacity



%8 Some Final Remarks &z

Thm 10.4.1 | For a discrete memoryless channel with capacity C,
distortion rate D is achievable if and only if C > R(D).

Thm 10.3.1 | The rate distortion function of a Bernoulli(p) source
w/ Hamming distortion is given by

H(p) —H(D), 0<D <min{p,1—pj,
0, D > min{p, 1 — p}.

R(D) =

Thm 10.3.2 | The rate distortion function of a ' (0,05?) source
w/ squared-error distortion is given by

26



%8 Things to Discuss &R

[ ] No consensus on a “good” distortion metric for human perception

L] What if the input is not i.i.d. sampled from X?
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