The Rate Distortion Theory

Yonsei CS Theory Student Group Seminar Information Theory Series, Week 5 Presented by Sungmin Kim on 24' Apr. 04

High loss

Low loss

 \Box Definition of loss (=distortion) Relation between rate and loss Topics to consider

Methods for computing optimal rate given loss

SE Rate and Distortion SE

[Rate] Define rate R as the average number of bits per symbol for representing X^n . ш

Intuitively, we lose information as R decreases \triangleright

Encode 4 pixels using a single pixel

 $R = 1/4$

Ext Rate and Distortion &

 \Box [Rate] Recall that, in the channel coding theorem, the definition of the rate R is

$$
R=\frac{\log M}{n},
$$

where M is the number of possible values of the channel input. Rearranging gives

$$
M=2^{nR}.
$$

EXTED Rate and Distortion &B

EXA: Rate and Distortion &

 \Box [Distortion Code] Given a rate R, a function pair (f_n, g_n) where

the encoding function $f_n \colon \mathcal{X}^n \to \{1, 2, ..., 2^{nR}\}$ \longrightarrow is a $(2^{nR}, n)$ -rate distortion code, the decoding function $g_n: \{1, 2, ..., 2^{nR}\} \to \widehat{X}^n$ i.e., the lossy encoding scheme.

Exted Acts Rate and Distortion &

[Distortion] Define distortion function $d: \mathcal{X} \times \widehat{\mathcal{X}} \to \mathbb{R}^+$: \Box

represents how different \hat{X} is from X options include Hamming distortion

$$
[d(x,\hat{x})=0] \Leftrightarrow [x=\hat{x}]
$$

Or the squared-error distortion

$$
d(x,\hat{x})=(x-\hat{x})^2.
$$

EXA: Rate and Distortion &

[Distortion between sequences] The distortion between x^n and \hat{x}^n is \overline{n}

$$
d(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n d(x_i, \hat{x}_i).
$$

[Distortion of a code] The distortion *D* of a $(2^{nR}, n)$ -rate distortion code (f_n, g_n) is $D = \mathbb{E} \left[d \left(X^n, g_n(f_n(X^n)) \right) \right],$

the expected distortion over all X^n values.

EXADE Rate and Distortion &B

 \Box [Achievability] The rate-distortion pair (R, D) is achievable if there exists a sequence of $(2^{nR}, n)$ -rate distortion codes (f_n, g_n) such that

$$
\lim_{n \to \infty} \mathbb{E}\left[d\left(X^n, g_n(f_n(X^n))\right)\right] \le D.
$$

[Rate Distortion Function] The rate distortion function $R(D)$ gives the infimum of rates R such that (R, D) is in the closure of the set of achievable rate distortion pairs.

EXA The Information Rate Distortion Function &

Def The information rate distortion function $R^{(I)}(D)$ is defined as the following:

$$
\min_{p(x,\hat{x}):\sum_{(x,\hat{x})}p(x)p(\hat{x}|x) d(x,\hat{x}) \le D} I(X;\hat{X})
$$

i.e., the minimum mutual information over all joint distributions $p(x, \hat{x})$ with total distortion at most D .

Thm 10.2.1 The minimum achievable rate at distortion D is exactly

$$
R(D) = R^{(I)}(D).
$$

[part 1] $R \ge R^{(1)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. [part 2] $(R^{(I)}(D), D)$ is achievable.

EXA The Minimum Achievable Rate for Distortion & Prove $R \ge R^{(1)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. Lem $R^{(1)}(D)$ is convex and non-increasing in D.

 \Box [non-increasing] if *D* increases, more joint distributions $p(x, \hat{x})$ should be considered;

$$
\min_{p(x,\hat{x}):\sum_{(x,\hat{x})}p(x)p(\hat{x}|x)d(x,\hat{x})\le D}I(X;\hat{X})
$$

Thus, $R^{(I)}(D)$ is non-increasing in D.

EXA The Minimum Achievable Rate for Distortion & Prove $R \ge R^{(1)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. | Lem | $R^{(I)}(D)$ is convex and non-increasing in D. **[CONVEXITY] First, rewrite** Let $p_1(x, \hat{x}) = p(x)p_1(\hat{x} | x)$ and $p_2(x, \hat{x}) = p(x)p_2(\hat{x} | x)$ be their distributions, resp. Now, consider (R_1, D_1) and (R_2, D_2) , both on the rate distortion curve. $D = \mathbb{E} \left[d \left(X^n, g_n(f_n(X^n)) \right) \right] = \sum p(x^n, \hat{x}^n) d(x^n, \hat{x}^n)$ χ , $\hat{\chi}$ i.e., *D* is linear in $p(\hat{x}^n | x^n)$.

Let $p_{\lambda} = \lambda p_1 + (1 - \lambda)p_2$ and we have $D_{\lambda} = \lambda D_1 + (1 - \lambda)D_2$ by linearity in $p(\hat{x}^n | x^n)$.

EXA The Minimum Achievable Rate for Distortion & Prove $R \ge R^{(1)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. $|$ Lem $|$ $R^{(I)}(D)$ is convex and non-increasing in D. \Box [convexity-cont.] Recall that $I(X; \hat{X})$ is convex (Thm. 2.7.4) $R^{(I)}(D_{\lambda}) \leq I_{p_{\lambda}}(X; \hat{X})$ $\leq \lambda I_{p_1}(X;\hat{X}) + (1-\lambda)I_{p_2}(X;\hat{X})$ $= \lambda R(D_1) + (1 - \lambda)R(D_2)$ (R_1, D_1) (R_2,D_2) D_{λ}

Thus, $R^{(I)}(D)$ is convex in D.

EXA The Minimum Achievable Rate for Distortion & Prove $R \ge R^{(1)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. \Box Follow the series of inequalities: ≥ [Property of] [≤] log $\geq H(f_n(X^n)) - H(f_n(X^n) \mid X^n)$

= ; [Definition of mutual information] ≥ ; [Data processing inequality]

 $= H(X^n) - H(X^n | \hat{X}^n)$

14 $=$ \sum $i=1$ \boldsymbol{n} $H(X_i) - \sum_{i=1}^{n}$ $i=1$ \boldsymbol{n} $H(X_i \mid \hat{X}^n, X_{i-1}, ..., X_1)^{[X_i]'}$ [Chain rule] [Chain rule]

EXA The Minimum Achievable Rate for Distortion & Prove $R \ge R^{(1)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. \Box Follow the series of inequalities: [Conditioning reduces entropy] ≥ $nR \geq$ $\left.\rule{0cm}{1.2cm}\right>$ $i=1$ \boldsymbol{n} $H(X_i) - \sum_{i=1}^{n}$ $i=1$ \boldsymbol{n} $H(X_i | \hat{X}^n, X_{i-1}, ..., X_1)$ $i=1$ \boldsymbol{n} $H(X_i) - \sum_{i=1}^{n}$ $i=1$ \boldsymbol{n} $H(X_i \mid \hat{X})$ \boldsymbol{i} $=$ \sum $i=1$ \boldsymbol{n} $I\big(X_i;\hat{X}$ \boldsymbol{i}

EXA The Minimum Achievable Rate for Distortion & Prove $R \ge R^{(1)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. \Box Follow the series of inequalities: [Definition of] ≥ , $nR \geq$ $\left.\rule{0cm}{1.2cm}\right>$ $i=1$ \boldsymbol{n} $I\big(X_i;\hat{X}$ $\boldsymbol{\mathring{l}}$ $i=1$ \boldsymbol{n} $\boldsymbol{\mathcal{i}}$ $\geq nR^{(I)}$ 1 \boldsymbol{n} $\sum_{i=1}^{n}$ $i=1$ \boldsymbol{n} $\mathbb{E}\big[d\big(X_i, \hat{X}$ $[i]$ \bigcup \bigcup \bigcap [Convexity of $R^{(I)}(D)$]

EXA The Minimum Achievable Rate for Distortion & Prove $R \ge R^{(1)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. \Box Follow the series of inequalities: [Definition of ,] = , $nR \geq nR^{(I)}$ 1 \boldsymbol{n} $\sum_{i=1}^{n}$ $i=1$ \boldsymbol{n} $\mathbb{E}\big[d\big(X_i, \hat{X}$ $\boldsymbol{\mathring{l}}$ $[R^{(I)}(D)$ non-increasing] ≥ [, [≤] from condition] Therefore, we have $R \ge R^{(1)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$.

EXA The Minimum Achievable Rate for Distortion &

Prove $(R^{(I)}(D), D)$ is achievable.

Claim For any $\delta > 0$, there exists a rate distortion code with rate R and distortion $\leq D + \delta$.

Proof Technical; uses the distortion ϵ -typicality to bound probabilities

$$
\left| -\frac{1}{n} \log p(x^n) - H(X) \right| < \epsilon,
$$
\n
$$
\left| -\frac{1}{n} \log p(\hat{x}^n) - H(\hat{X}) \right| < \epsilon,
$$
\n
$$
\left| -\frac{1}{n} \log p(x^n, \hat{x}^n) - H(X, \hat{X}) \right| < \epsilon,
$$
\n
$$
\left| d(x^n, \hat{x}^n) - \mathbb{E}[d(X, \hat{X})] \right| < \epsilon.
$$

SEB Characterizing the Rate Distortion Function SEB **Prob Compute the rate distortion function** $R(D) =$ min $q(\hat{x}|x): \sum_{(x,\hat{x})} p(x)q(\hat{x}|x) d(x,\hat{x}) \le D$ $I(X;\widehat{X})$. Recall that $I(X; \hat{X})$ is convex; the problem is a minimization of a convex function over the convex set of all $q(x | \hat{x}) \ge 0$ satisfying the constraints $\sum_{\hat{x}} q(\hat{x} | x) = 1$ for all x , $\sum_{(x,\hat{x})} p(x)q(\hat{x} | x) d(x,\hat{x}) \leq D.$

Reformulate the problem using Lagrange multipliers and we get…

28 Characterizing the Rate Distortion Function 88
\nProb Optimize the following functional:
\n
$$
J(q) = \sum_{x} \sum_{\hat{x}} p(x)q(\hat{x} | x) \log \frac{q(\hat{x} | x)}{\sum_{x} p(x)q(\hat{x} | x)} + \lambda \sum_{x} \sum_{\hat{x}} p(x)q(\hat{x} | x) d(x, \hat{x}) + \sum_{x} \nu(x) \sum_{\hat{x}} q(\hat{x} | x) \text{...} \qquad \text{conditional probability}
$$
\nWe want to know $q(\hat{x}) = \sum_{x} p(x)q(\hat{x} | x)$ values for all $\hat{x} \in \hat{x}$.

SEB Computing the Rate Distortion Function & Lem Let $p(x)p(y|x)$ be a given joint distribution. Then, $D(p(x)p(y | x) || p(x)r^{*}(y)) = \min_{y \in \mathbb{R}^n}$ $r(y$ $D(p(x)p(y | x) || p(x)r(y$ where $r^*(y) = \sum_{x} p(x) p(y | x)$.

Proof Subtract LHS from $D(p(x)p(y | x) || p(x)r(y))$ for any $r(y)$ to get ≥ 0 .

SEB Computing the Rate Distortion Function & Rewrite the rate distortion function (again) $R(D) =$ min $q(\hat{x}|x): \sum_{(x,\hat{x})} p(x)q(\hat{x}|x) d(x,\hat{x}) \le D$ $I(X;\hat{X})$ $=$ min $q(\hat{x}|x): \sum_{(x,\hat{x})} p(x)q(\hat{x}|x) d(x,\hat{x}) \le D$ $D(p(x)q(\hat{x} | x)||p(x)q(\hat{x}))$ Recall that $q(\hat{x}) = \sum_{x} q(\hat{x}, x) = \sum_{x} p(x)q(\hat{x} | x) = r^{*}(y)$ from the prev. lemma. $=$ min min
 $\min_{r(\hat{x})} q(\hat{x}|x): \sum_{(x,\hat{x})} p(x)q(\hat{x}|x) d(x,\hat{x}) \leq D$ $D(p(x)q(\hat{x} | x)||p(x)r(\hat{x}))$ Minimize B Minimize A

EXECOMPUTING the Rate Distortion Function &B

Alg [Blahut-Arimoto]

Given: distortion *D*, input distribution $p(x)$ where X_i 's are i.i.d. sampled from Goal: Compute the conditional probability $q(\hat{x} | x)$ that minimizes $R(D)$. Choose initial λ and $|\mathcal{\hat{X}}|$ values $r(\hat{x})$. Optimization w/ \Box Repeat until convergence: Lagrangian multiplier Minimize A by solving for all $(x, \hat{x}) \in \mathcal{X} \times \widehat{\mathcal{X}}$ $r(\widehat{x}) e^{-\lambda d(x, \widehat{x})}$ $q(\hat{x} | x) =$ $\sum_{\hat{\chi}} r(\hat{\chi}) e^{-\lambda d(x, \hat{\chi})}$ Minimize B by computing for all $\hat{x} \in \mathcal{\widehat{X}}$ \blacksquare Lemma $r(\hat{x}) = \int p(x)q(\hat{x} | x)$ \mathcal{X}

& Computing the Rate Distortion Function &

Remark

- Higher λ means less compression
- Similar algorithm used for computing channel capacity

Some Final Remarks &

Thm $\overline{10.4.1}$ For a discrete memoryless channel with capacity C, distortion rate *D* is achievable if and only if $C > R(D)$.

Thm 10.3.1 The rate distortion function of a Bernoulli(p) source w/ Hamming distortion is given by

$$
R(D) = \begin{cases} H(p) - H(D), & 0 \le D \le \min\{p, 1 - p\}, \\ 0, & D > \min\{p, 1 - p\}. \end{cases}
$$

Thm 10.3.2 The rate distortion function of a $\mathcal{N}(0, \sigma^2)$ source w/ squared-error distortion is given by

$$
R(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D}, & 0 \le D \le \sigma^2, \\ 0, & D > \sigma^2. \end{cases}
$$

■ No consensus on a "good" distortion metric for human perception

What if the input is not i.i.d. sampled from \mathcal{X} ?

Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*, 2nd edition. Wiley, 2006.