The Rate Distortion Theory

Yonsei CS Theory Student Group Seminar Information Theory Series, Week 5 Presented by Sungmin Kim on 24' Apr. 04

High loss

Low loss

 \square [Rate] Define rate R as the average number of bits per symbol for representing X^n .

▷ Intuitively, we lose information as *R* decreases

Encode 4 pixels using a single pixel

R = 1/4

[Rate] Recall that, in the channel coding theorem, the definition of the rate *R* is

$$R=\frac{\log M}{n},$$

where *M* is the number of possible values of the channel input. Rearranging gives

$$M=2^{nR}.$$

[Distortion Code] Given a rate R, a function pair (f_n, g_n) where

the encoding function $f_n: \mathcal{X}^n \to \{1, 2, ..., 2^{nR}\}$ is a $(2^{nR}, n)$ -rate distortion code, the decoding function $g_n: \{1, 2, ..., 2^{nR}\} \to \widehat{\mathcal{X}}^n$ i.e., the lossy encoding scheme.

 $\Box \text{ [Distortion] Define distortion function } d: \mathcal{X} \times \widehat{\mathcal{X}} \to \mathbb{R}^+:$

represents how different X̂ is from X
options include Hamming distortion

$$[d(x,\hat{x})=0] \Leftrightarrow [x=\hat{x}]$$

> Or the squared-error distortion

$$d(x,\hat{x}) = (x - \hat{x})^2.$$

Distortion between sequences] The distortion between x^n and \hat{x}^n is

$$d(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n d(x_i, \hat{x}_i).$$

[Distortion of a code] The distortion D of a $(2^{nR}, n)$ -rate distortion code (f_n, g_n) is $D = \mathbb{E} \left[d \left(X^n, g_n(f_n(X^n)) \right) \right],$

the expected distortion over all X^n values.

[Achievability] The rate-distortion pair (R, D) is achievable if there exists a sequence of $(2^{nR}, n)$ -rate distortion codes (f_n, g_n) such that

$$\lim_{n\to\infty} \mathbb{E}\left[d\left(X^n, g_n(f_n(X^n))\right)\right] \leq D.$$

[Rate Distortion Function] The rate distortion function *R*(*D*) gives the infimum of rates *R* such that (*R*, *D*) is in the closure of the set of achievable rate distortion pairs.

The Information Rate Distortion Function

Def The information rate distortion function $R^{(I)}(D)$ is defined as the following:

$$\min_{\substack{p(x,\hat{x}):\sum_{(x,\hat{x})}p(x)p(\hat{x}|x)d(x,\hat{x})\leq D}}I(X;\hat{X})$$

i.e., the minimum mutual information over all joint distributions $p(x, \hat{x})$ with total distortion at most D.

Thm 10.2.1 The minimum achievable rate at distortion D is exactly

$$R(D) = R^{(I)}(D).$$

[part 1] $R \ge R^{(I)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. [part 2] $(R^{(I)}(D), D)$ is achievable. The Minimum Achievable Rate for Distortion Prove $R \ge R^{(I)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. Lem $R^{(I)}(D)$ is convex and non-increasing in D.

 \Box [non-increasing] if D increases, more joint distributions $p(x, \hat{x})$ should be considered;

$$\min_{\substack{p(x,\hat{x}):\sum_{(x,\hat{x})}p(x)p(\hat{x}|x)d(x,\hat{x})\leq D}}I(X;\hat{X})$$

Thus, $R^{(I)}(D)$ is non-increasing in D.

8 The Minimum Achievable Rate for Distortion Prove $R \ge R^{(I)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. $R^{(I)}(D)$ is convex and non-increasing in D. Lem [convexity] First, rewrite $D = \mathbb{E}\left[d\left(X^n, g_n(f_n(X^n))\right)\right] = \sum_{n=1}^{\infty} p(x^n, \hat{x}^n) d(x^n, \hat{x}^n)$ (\overline{x},\hat{x}) i.e., D is linear in $p(\hat{x}^n \mid x^n)$. Now, consider (R_1, D_1) and (R_2, D_2) , both on the rate distortion curve. Let $p_1(x, \hat{x}) = p(x)p_1(\hat{x} \mid x)$ and $p_2(x, \hat{x}) = p(x)p_2(\hat{x} \mid x)$ be their distributions, resp.

Let $p_{\lambda} = \lambda p_1 + (1 - \lambda)p_2$ and we have $D_{\lambda} = \lambda D_1 + (1 - \lambda)D_2$ by linearity in $p(\hat{x}^n \mid x^n)$.

1 The Minimum Achievable Rate for Distortion Prove $R \ge R^{(I)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. $R^{(I)}(\overline{D})$ is convex and non-increasing in D. Lem [convexity-cont.] Recall that $I(X; \hat{X})$ is convex (Thm. 2.7.4) $R^{(I)}(D_{\lambda}) \leq I_{p_{\lambda}}(X;\hat{X})$ (R_1, D_1) $\leq \lambda I_{p_1}(X;\hat{X}) + (1-\lambda)I_{p_2}(X;\hat{X})$ $= \lambda R(D_1) + (1 - \lambda)R(D_2)$ (R_{2}, D_{2})

Thus, $R^{(I)}(D)$ is convex in D.

1 The Minimum Achievable Rate for Distortion Prove $R \ge R^{(I)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. **Follow** the series of inequalities: $nR \ge H(f_n(X^n))$ [Property of H] $H(X) \le \log|\mathcal{X}|$ $\geq H(f_n(X^n)) - H(f_n(X^n) \mid X^n)$ $= I(X^n; f_n(X^n))$ [Definition of mutual information] $\geq I(X^n; \hat{X}^n)$ [Data processing inequality] $= H(X^n) - H(X^n \mid \hat{X}^n)$ \boldsymbol{n} $= \sum_{i=1}^{N} H(X_i) - \sum_{i=1}^{N} H(X_i \mid \hat{X}^n, X_{i-1}, \dots, X_1) \begin{bmatrix} X_i \text{'s independent} \end{bmatrix}$ (Chain rule)
(14) 1 The Minimum Achievable Rate for Distortion Prove $R \ge R^{(I)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. **Follow** the series of inequalities: \boldsymbol{n} $nR \ge \sum_{i=1}^{n} H(X_i) - \sum_{i=1}^{n} H(X_i \mid \widehat{X}^n, X_{i-1}, \dots, X_1)$ \boldsymbol{n} n $\geq \sum_{i=1}^{i=1} H(X_i) - \sum_{i=1}^{i=1} H(X_i \mid \hat{X}_i) \quad \dots \quad \text{[Conditioning reduces entropy]}$ $=\sum_{i=1}^{n}I(X_i;\hat{X}_i)$

1 The Minimum Achievable Rate for Distortion Prove $R \ge R^{(I)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. **Follow** the series of inequalities: $nR \ge \sum_{i=1}^{N} I(X_i; \hat{X}_i)$ $\geq \sum R^{(I)} \left(\mathbb{E} \left[d(X_i, \hat{X}_i) \right] \right)$ [Definition of $R^{(I)}(D)$] $\geq nR^{(I)} \left(\frac{1}{n} \sum_{i=1}^{n} \left(\mathbb{E} \left[d(X_i, \hat{X}_i) \right] \right) \right) \quad \text{"Convexity of } R^{(I)}(D)$ 1 The Minimum Achievable Rate for Distortion Prove $R \ge R^{(I)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$. Follow the series of inequalities: $n\mathbf{R} \ge nR^{(I)} \left(\frac{1}{n} \sum_{i=1}^{n} \left(\mathbb{E}\left[d(X_i, \hat{X}_i)\right] \right) \right)$ $= nR^{(I)}(\mathbb{E}[d(X, \hat{X})])$ [Definition of $d(X, \hat{X})$] $[R^{(I)}(D)$ non-increasing] Therefore, we have $R \ge R^{(I)}(D)$ for any $(2^{nR}, n)$ -rate distortion code with distortion $\le D$.

The Minimum Achievable Rate for Distortion

Prove $(R^{(I)}(D), D)$ is achievable.

Claim For any $\delta > 0$, there exists a rate distortion code with rate R and distortion $\leq D + \delta$.

Proof Technical; uses the distortion ϵ -typicality to bound probabilities

$$\begin{vmatrix} -\frac{1}{n}\log p(x^{n}) - H(X) \end{vmatrix} < \epsilon, \\ \begin{vmatrix} -\frac{1}{n}\log p(\hat{x}^{n}) - H(\hat{X}) \end{vmatrix} < \epsilon, \\ \begin{vmatrix} -\frac{1}{n}\log p(x^{n}, \hat{x}^{n}) - H(X, \hat{X}) \end{vmatrix} < \epsilon, \\ \end{vmatrix}$$

Characterizing the Rate Distortion Function Compute the rate distortion function Prob $R(D) = \min_{\substack{q(\hat{x}|x): \sum_{(x,\hat{x})} p(x)q(\hat{x}|x) d(x,\hat{x}) \leq D}} I(X;\hat{X}).$ Recall that $I(X; \hat{X})$ is convex; the problem is a minimization of a convex function over the convex set of all $q(x \mid \hat{x}) \ge 0$ satisfying the constraints $\sum_{\hat{x}} q(\hat{x} \mid x) = 1 \text{ for all } x,$ $\sum_{(x,\hat{x})} p(x)q(\hat{x} \mid x)d(x,\hat{x}) \leq D.$

Reformulate the problem using Lagrange multipliers and we get...

Characterizing the Rate Distortion Function
Prob Optimize the following functional:

$$J(q) = \sum_{x} \sum_{\hat{x}} p(x)q(\hat{x} \mid x) \log \frac{q(\hat{x} \mid x)}{\sum_{x} p(x)q(\hat{x} \mid x)}$$

$$+\lambda \sum_{x} \sum_{\hat{x}} p(x)q(\hat{x} \mid x) d(x, \hat{x})$$

$$+\sum_{x} v(x) \sum_{\hat{x}} q(\hat{x} \mid x)$$
[conditional probability]
We want to know $q(\hat{x}) = \sum_{x} p(x)q(\hat{x} \mid x)$ values for all $\hat{x} \in \hat{x}$.

Computing the Rate Distortion Function Lem Let p(x)p(y | x) be a given joint distribution. Then, $D(p(x)p(y | x)||p(x)r^{*}(y)) = \min_{r(y)} D(p(x)p(y | x)||p(x)r(y))$ where $r^{*}(y) = \sum_{x} p(x)p(y | x)$.

Proof Subtract LHS from D(p(x)p(y | x)||p(x)r(y)) for any r(y) to get ≥ 0 .

8 Computing the Rate Distortion Function Rewrite the rate distortion function (again) $R(D) = \min_{\substack{q(\hat{x}|x): \sum_{(x,\hat{x})} p(x)q(\hat{x}|x) \mid d(x,\hat{x}) \leq D}} I(X;\hat{X})$ $= \min_{\substack{q(\hat{x}|x):\sum_{(x,\hat{x})} p(x)q(\hat{x}|x) \mid d(x,\hat{x}) \leq D}} D(p(x)q(\hat{x} \mid x)||p(x)q(\hat{x}))$ \square Recall that $q(\hat{x}) = \sum_{x} q(\hat{x}, x) = \sum_{x} p(x)q(\hat{x} \mid x) = r^{*}(y)$ from the prev. lemma. $= \min_{\substack{r(\hat{x}) \ q(\hat{x}|x): \sum_{(x,\hat{x})} p(x)q(\hat{x}|x) d(x,\hat{x}) \le D}} D(p(x)q(\hat{x}|x)||p(x)r(\hat{x}))$ Minimize A Minimize B

8 Computing the Rate Distortion Function

Alg [Blahut-Arimoto]

Given: distortion D, input distribution p(x) where X_i 's are i.i.d. sampled from Goal: Compute the conditional probability $q(\hat{x} \mid x)$ that minimizes R(D). Choose initial λ and $|\hat{\chi}|$ values $r(\hat{x})$. Optimization w/ Repeat until convergence: Lagrangian multiplier Minimize A by solving for all $(x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}$ $q(\hat{x} \mid x) = \frac{r(\hat{x})e^{-\lambda d(x,\hat{x})}}{\sum_{\hat{x}} r(\hat{x})e^{-\lambda d(x,\hat{x})}}$ Minimize B by computing for all $\hat{x} \in \widehat{\mathcal{X}}$ Lemma $r(\hat{x}) = \sum p(x)q(\hat{x} \mid x)$

8 Computing the Rate Distortion Function

Remark

- Higher λ means less compression
- Similar algorithm used for computing channel capacity

🕸 Some Final Remarks 🕸

Thm 10.4.1 For a discrete memoryless channel with capacity C, distortion rate D is achievable if and only if C > R(D).

Thm 10.3.1

The rate distortion function of a Bernoulli(*p*) source w/ Hamming distortion is given by

$$R(D) = \begin{cases} H(p) - H(D), & 0 \le D \le \min\{p, 1 - p\}, \\ 0, & D > \min\{p, 1 - p\}. \end{cases}$$

Thm 10.3.2

The rate distortion function of a $\mathcal{N}(0, \sigma^2)$ source w/ squared-error distortion is given by

$$R(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D}, & 0 \le D \le \sigma^2, \\ 0, & D > \sigma^2. \end{cases}$$

■ No consensus on a "good" distortion metric for human perception

 \square What if the input is not i.i.d. sampled from \mathcal{X} ?

Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*, 2nd edition. Wiley, 2006.