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𝑋𝑋: a discrete random variable over 𝒳𝒳 with the PMF(probability mass function) 𝑝𝑝 ⋅ .
The entropy of 𝑋𝑋: a measure of the uncertainty of 𝑋𝑋

𝐻𝐻 𝑋𝑋 = �
𝑥𝑥∈𝒳𝒳

𝑝𝑝 𝑥𝑥 log
1

𝑝𝑝 𝑥𝑥
= 𝔼𝔼𝑋𝑋~𝑝𝑝 log

1
𝑝𝑝 𝑋𝑋

Fact. 𝐻𝐻 𝑋𝑋 ≥ 0.

Conditional Entropy

𝐻𝐻 𝑌𝑌 𝑋𝑋 = �
𝑥𝑥∈𝒳𝒳

𝑝𝑝 𝑥𝑥 𝐻𝐻 𝑌𝑌 𝑋𝑋 = 𝑥𝑥 = �
𝑥𝑥∈𝒳𝒳,𝑦𝑦∈𝒴𝒴

𝑝𝑝 𝑥𝑥,𝑦𝑦 log
1

𝑝𝑝 𝑦𝑦 𝑥𝑥
= 𝔼𝔼 𝑋𝑋,𝑌𝑌 ~𝑝𝑝 log

1
𝑝𝑝 𝑌𝑌 𝑋𝑋

Chain Rule 
𝐻𝐻 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 = 𝐻𝐻 𝑋𝑋1 + 𝐻𝐻 𝑋𝑋2 𝑋𝑋1 + 𝐻𝐻 𝑋𝑋3 𝑋𝑋2,𝑋𝑋1 + ⋯+ 𝐻𝐻 𝑋𝑋𝑛𝑛 𝑋𝑋𝑛𝑛−1, … ,𝑋𝑋2,𝑋𝑋1

Entropy
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Kullback-Leibler divergence between PMFs 𝑝𝑝 and 𝑞𝑞

𝐷𝐷 𝑝𝑝 ∥ 𝑞𝑞 = �
𝑥𝑥∈𝒳𝒳

𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

= 𝔼𝔼𝑋𝑋~𝑝𝑝 log
𝑝𝑝 𝑋𝑋
𝑞𝑞 𝑋𝑋

= 𝔼𝔼𝑋𝑋~𝑝𝑝 log
1

𝑞𝑞 𝑋𝑋
− 𝔼𝔼𝑋𝑋~𝑝𝑝 log

1
𝑝𝑝 𝑋𝑋

* 𝐷𝐷 𝑝𝑝 ∥ 𝑞𝑞 = ∞ if ∃ 𝑥𝑥 ∈ 𝒳𝒳 s.t. 𝑝𝑝 𝑥𝑥 > 0 and 𝑞𝑞 𝑥𝑥 = 0.

* 𝐷𝐷 𝑝𝑝 ∥ 𝑞𝑞 ≠ 𝐷𝐷 𝑞𝑞 ∥ 𝑝𝑝 , i.e., no symmetricity in general

* 𝐷𝐷 𝑝𝑝 ∥ 𝑞𝑞 + 𝐷𝐷 𝑞𝑞 ∥ 𝑟𝑟 ≱ 𝐷𝐷 𝑝𝑝 ∥ 𝑟𝑟 and 𝐷𝐷 𝑝𝑝 ∥ 𝑞𝑞 + 𝐷𝐷 𝑞𝑞 ∥ 𝑟𝑟 ≰ 𝐷𝐷 𝑝𝑝 ∥ 𝑟𝑟 in general

Chain rule
𝐷𝐷 𝑝𝑝 𝑥𝑥,𝑦𝑦 ∥ 𝑞𝑞 𝑥𝑥,𝑦𝑦 = 𝐷𝐷 𝑝𝑝 𝑥𝑥 ∥ 𝑞𝑞 𝑥𝑥 + 𝐷𝐷 𝑝𝑝 𝑦𝑦 𝑥𝑥 ∥ 𝑞𝑞 𝑦𝑦 𝑥𝑥

Kullback-Leibler Divergence (Relative Entropy)
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Mutual information
• a measure of the amount of information that one RV contains about another RV

𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝔼𝔼 𝑋𝑋,𝑌𝑌 ~𝑝𝑝 log
𝑝𝑝 𝑋𝑋,𝑌𝑌
𝑝𝑝 𝑋𝑋 𝑝𝑝 𝑌𝑌

𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝐷𝐷 𝑝𝑝 𝑥𝑥,𝑦𝑦 ∥ 𝑝𝑝 𝑥𝑥 𝑝𝑝 𝑦𝑦
𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋 𝑌𝑌 = 𝐻𝐻 𝑌𝑌 − 𝐻𝐻 𝑌𝑌 𝑋𝑋

Conditional Mutual Information
𝐼𝐼 𝑋𝑋;𝑌𝑌|𝑍𝑍 = 𝐻𝐻 𝑋𝑋 𝑍𝑍 − 𝐻𝐻 𝑋𝑋 𝑌𝑌,𝑍𝑍

* 𝐼𝐼 𝑋𝑋;𝑌𝑌|𝑍𝑍 ≰ 𝐼𝐼 𝑋𝑋;𝑌𝑌 and 𝐼𝐼 𝑋𝑋;𝑌𝑌|𝑍𝑍 ≱ 𝐼𝐼 𝑋𝑋;𝑌𝑌 in general

Chain Rule
𝐼𝐼 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛;𝑌𝑌 = 𝐼𝐼 𝑋𝑋1;𝑌𝑌 + 𝐼𝐼 𝑋𝑋2;𝑌𝑌|𝑋𝑋1 + 𝐼𝐼 𝑋𝑋3;𝑌𝑌|𝑋𝑋2,𝑋𝑋1 + ⋯+ 𝐼𝐼 𝑋𝑋𝑛𝑛;𝑌𝑌 𝑋𝑋𝑛𝑛−1, … ,𝑋𝑋2,𝑋𝑋1

Mutual Information
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the reduction in the uncertainty of 𝑋𝑋 (𝑌𝑌)
due to the knowledge of 𝑌𝑌 (𝑋𝑋)

the mutual information of 𝑋𝑋1 and 𝑋𝑋2, given 𝑋𝑋3;
not the mutual information of 𝑋𝑋1 and 𝑋𝑋2|𝑋𝑋3.



Information Inequality

Theorem. 𝐷𝐷 𝑝𝑝 ∥ 𝑞𝑞 ≥ 0 with equality iff 𝑝𝑝 = 𝑞𝑞.
Corollary. 𝐼𝐼 𝑋𝑋;𝑌𝑌 ≥ 0 with equality iff 𝑋𝑋 and 𝑌𝑌 are independent.
Corollary. 𝐻𝐻 𝑋𝑋 𝑌𝑌 ≤ 𝐻𝐻 𝑋𝑋 , i.e., conditioning only reduces entropy. 
Corollary. 𝐻𝐻 𝑋𝑋 ≤ log 𝒳𝒳 with equality iff 𝑝𝑝 is the uniform distribution.
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Data-processing Inequality

By chain rule, 
𝐼𝐼 𝑋𝑋;𝑍𝑍 + 𝐼𝐼 𝑋𝑋;𝑌𝑌|𝑍𝑍 = 𝑰𝑰 𝑿𝑿;𝒀𝒀,𝒁𝒁 = 𝐼𝐼 𝑋𝑋;𝑌𝑌 + 𝐼𝐼 𝑋𝑋;𝑍𝑍|𝑌𝑌

Theorem. If 𝑋𝑋 → 𝑌𝑌 → 𝑍𝑍, then 𝐼𝐼 𝑋𝑋;𝑌𝑌 ≥ 𝐼𝐼 𝑋𝑋;𝑍𝑍 .
Theorem. If 𝑋𝑋 → 𝑌𝑌 → 𝑍𝑍, then 𝐼𝐼 𝑋𝑋;𝑌𝑌 ≥ 𝐼𝐼 𝑋𝑋;𝑌𝑌 𝑍𝑍 . 

If 𝑋𝑋 → 𝑌𝑌 → 𝑍𝑍, 
by definition, 
𝐼𝐼 𝑋𝑋;𝑍𝑍|𝑌𝑌 = 0.



Source Coding Theorem
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noise-free

We have 𝑛𝑛 i.i.d. RVs. 
What is the min #bits required to send the data only with negligible error?



Upper/Lower bound on Compression

We can construct an instantaneous code given a length function ℓ:𝒳𝒳 → 0,1 ∗ if

�
𝑥𝑥∈𝒳𝒳

2−ℓ 𝑥𝑥 ≤ 1.

Shannon compression ℓ 𝑥𝑥 ≔ − log𝑝𝑝 𝑥𝑥 gives 𝔼𝔼𝑋𝑋~𝑝𝑝 ℓ 𝑋𝑋 < 𝐻𝐻 𝑋𝑋 + 1.

Theorem. Huffman compression is optimal, i.e., 𝔼𝔼 ℓHuffman 𝑋𝑋 ≤ 𝔼𝔼 ℓUniquely Decodable Code 𝑋𝑋 .

Any uniquely decodable code with a length function ℓ:𝒳𝒳 → 0,1 ∗ must satisfies

�
𝑥𝑥∈𝒳𝒳

2−ℓ 𝑥𝑥 ≤ 1.

Theorem. 𝔼𝔼 ℓUniquely Decodable Code 𝑋𝑋 ≥ 𝐻𝐻 𝑋𝑋 with equality iff 𝑝𝑝 𝑥𝑥 = 2−ℓ 𝑥𝑥 for all 𝑥𝑥 ∈ 𝒳𝒳.

𝐻𝐻 𝑋𝑋 ≤ 𝔼𝔼 ℓ∗ 𝑋𝑋 < 𝐻𝐻 𝑋𝑋 + 1
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Upper/Lower bound on Compression

Consider a sequence of (possibly dependent) RVs 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 with joint distribution 𝑝𝑝.
Shannon compression gives 𝔼𝔼 𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑛𝑛 ~𝑝𝑝 ℓ 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 < 𝐻𝐻 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 + 1.

If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 are i.i.d., 𝐻𝐻 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 = 𝐻𝐻 𝑋𝑋 .
Therefore, the expected length per symbol of an optimal compression is

𝐻𝐻 𝑋𝑋 ≤
1
𝑛𝑛
𝔼𝔼 ℓ∗ 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 < 𝐻𝐻 𝑋𝑋 +

1
𝑛𝑛

.

𝑯𝑯(𝑿𝑿) is the fundamental limit!

Q. What is the fundamental limit if we allow small error in the compression scheme?
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AEP (Asymptotic Equipartition Property)

Consider a sequence of i.i.d. RVs 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
For any 𝜖𝜖 > 0, for all sufficiently large 𝑛𝑛,

Pr 2−𝑛𝑛 𝐻𝐻 𝑋𝑋 +𝜖𝜖 < 𝑝𝑝 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 < 2−𝑛𝑛 𝐻𝐻 𝑋𝑋 −𝜖𝜖 ≥ 1 − 𝜖𝜖.

The typical set 𝐴𝐴𝜖𝜖
𝑛𝑛 w.r.t. 𝑝𝑝 is the set of sequence 𝐱𝐱 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 𝒳𝒳𝑛𝑛 such that

2−𝑛𝑛 𝐻𝐻 𝑋𝑋 +𝜖𝜖 < 𝑝𝑝 𝐱𝐱 < 2−𝑛𝑛 𝐻𝐻 𝑋𝑋 −𝜖𝜖 .
AEP. For sufficiently large 𝑛𝑛,

Pr 𝐗𝐗 ∈ 𝐴𝐴𝜖𝜖
𝑛𝑛 ≥ 1 − 𝜖𝜖

1 − 𝜖𝜖 2𝑛𝑛 𝐻𝐻 𝑋𝑋 −𝜖𝜖 ≤ 𝐴𝐴𝜖𝜖
𝑛𝑛 ≤ 2𝑛𝑛 𝐻𝐻 𝑋𝑋 +𝜖𝜖 .

𝑨𝑨𝝐𝝐
𝒏𝒏 contains most of the probability and has a cardinality ≈ 𝟐𝟐𝒏𝒏𝒏𝒏 𝑿𝑿 .

Presented by Changyeol Lee 9

contains most of the probability

cardinality ≈ 2𝑛𝑛𝑛𝑛 𝑋𝑋



Typical Set is a Smallest Set

Let 𝐵𝐵𝛿𝛿
𝑛𝑛 ⊆ 𝒳𝒳𝑛𝑛 be a smallest set with Pr 𝐗𝐗 ∈ 𝐵𝐵𝛿𝛿

𝑛𝑛 ≥ 1 − 𝛿𝛿.

Lemma. 𝐵𝐵𝛿𝛿
𝑛𝑛 ≥ 1 − 𝜖𝜖 − 𝛿𝛿 2𝑛𝑛 𝐻𝐻 𝑋𝑋 −𝜖𝜖 ≈ 2𝑛𝑛𝑛𝑛 𝑋𝑋 .

𝑨𝑨𝝐𝝐
𝒏𝒏 contains most of the probability and essentially has a smallest cardinality of ≈ 𝟐𝟐𝒏𝒏𝒏𝒏 𝑿𝑿 .

Source coding theorem. 
Consider a sequence of 𝑛𝑛 i.i.d. RVs with entropy 𝐻𝐻.
(1-1) Using slightly more than 𝑛𝑛𝑛𝑛 bits admits a lossless compression.
(1-2) With #bits very close to 𝑛𝑛𝑛𝑛, Pr 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≈ 0 for sufficiently large 𝑛𝑛
(2) With less than 𝑛𝑛𝑛𝑛 bits, Pr 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≈ 1 for sufficiently large 𝑛𝑛 (i.e., all information is lost).
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Channel Coding Theorem
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Suppose we use 𝑛𝑛 symbols to encode a date to cope with the channel noise.
What is the max #data we can send only with negligible error?



We have a noisy channel 𝑝𝑝 𝑦𝑦|𝑥𝑥 .

Alice tosses a coin 𝑋𝑋 and send 𝑋𝑋 to Bob (using single bit).
• amount of information before being sent = 𝐻𝐻 𝑋𝑋

Bob receives a bit 𝑌𝑌 through a noisy channel.
• amount of information that channel decreased = 𝐻𝐻 𝑋𝑋|𝑌𝑌
• amount of information conveyed by the channel = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋|𝑌𝑌 = 𝐼𝐼 𝑋𝑋,𝑌𝑌

Information channel capacity
• Assume for now that we wish to maximize the amount of information conveyed by the channel.
• We do this by choosing a best distribution of 𝑋𝑋.

Motivation

Presented by Changyeol Lee 12



Discrete memoryless channel 𝑄𝑄
𝒳𝒳: an input alphabet (a set of input symbols)

𝒴𝒴: an output alphabet (a set of output symbols)

𝑝𝑝 𝑦𝑦|𝑥𝑥 𝑥𝑥∈𝒳𝒳: a collection of (conditional) PMFs

Choose a distribution. → Capable of sending 𝐼𝐼 𝑋𝑋;𝑌𝑌 amount of information

Channel capacity (choose a best distribution)
𝐶𝐶 = max

distribution over 𝒳𝒳
𝐼𝐼 𝑋𝑋;𝑌𝑌

Channel and Channel Capacity
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* maximum is well defined



(𝑴𝑴,𝒏𝒏) code for a channel 𝑄𝑄 = 𝒳𝒳,𝑝𝑝 𝑦𝑦|𝑥𝑥 ,𝒴𝒴
• a set of indices(data) {1, … ,𝑀𝑀}

• a set of codewords 𝐱𝐱(1), … , 𝐱𝐱(𝑀𝑀) , where 𝐱𝐱(𝑗𝑗) ∈ 𝒳𝒳𝑛𝑛

A decoder 𝑔𝑔 guess an index.

• An optimal decoder 𝑔𝑔∗ chooses a posteriori most likely index.

(𝑀𝑀,𝑛𝑛) code sends an index with 𝑛𝑛 transmissions.
Rate 𝑅𝑅 of (𝑀𝑀,𝑛𝑛) code for 𝑄𝑄

𝑅𝑅 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

#𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
=

log𝑀𝑀
𝑛𝑛

Maximal probability of error (for a fixed channel 𝑄𝑄 and fixed (𝑀𝑀,𝑛𝑛) code for 𝑄𝑄)
𝜆𝜆max ≔ max

𝑗𝑗∈{1,…,𝑀𝑀}
Pr

𝒀𝒀~𝑝𝑝 ⋅|𝐱𝐱(𝑗𝑗)
𝑔𝑔 𝒀𝒀 ≠ 𝑗𝑗

Code, Decode, Rate, Error
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𝑀𝑀,𝑛𝑛 ∈ ℕ

𝑗𝑗

𝐱𝐱(𝑗𝑗) 𝒀𝒀

�𝑗𝑗 ≔ 𝑔𝑔 𝒀𝒀

𝒀𝒀~𝑝𝑝 ⋅ |𝐱𝐱(𝑗𝑗) = �
𝑖𝑖=1

𝑛𝑛
𝑝𝑝 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖

𝑗𝑗

“encoding scheme”

log𝑀𝑀 -bit



Let us fix 𝑛𝑛.
Increase rate = Send more information per transmission

Increase rate = Cause more error (possibly)

Q. What rate can we prove is achievable?

One way to show achievability = show existence of such code

• Show the expected error of a random code is small.

• There must be a code with small error.

One (naïve) way to construct a random code

• Fix a distribution 𝑝𝑝𝑥𝑥 over 𝒳𝒳. Sample i.i.d. 𝑛𝑛 symbols from 𝑝𝑝𝑥𝑥 for each codeword, independently.

A. 𝑅𝑅 ≲ 𝐼𝐼 is achievable. 

If 𝑝𝑝𝑥𝑥 is a best distribution, 𝑅𝑅 ≲ 𝐶𝐶 is achievable.

Achievable Rate
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𝑗𝑗

𝐱𝐱(𝑗𝑗) 𝒀𝒀

�𝑗𝑗 ≔ 𝑔𝑔 𝒀𝒀

𝒀𝒀~𝑝𝑝 ⋅ |𝐱𝐱(𝑗𝑗) = �
𝑖𝑖=1

𝑛𝑛
𝑝𝑝 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖

𝑗𝑗

i.e., sending 2𝑛𝑛𝑛𝑛 is possible



The following holds for any discrete memoryless channel 𝑄𝑄 = 𝒳𝒳, 𝑝𝑝 𝑦𝑦|𝑥𝑥 ,𝒴𝒴 .
For any 𝜖𝜖 > 0 and 𝑅𝑅 < 𝐶𝐶 ≔ max

𝑝𝑝𝑥𝑥
𝐼𝐼 𝑋𝑋;𝑌𝑌 , there exists a 𝑀𝑀 ≔ 2𝑛𝑛𝑛𝑛 ,𝑛𝑛 code for 𝑄𝑄 such that 

𝜆𝜆max < 𝜖𝜖 for all sufficiently large 𝑛𝑛.

Showing the existence

• Fix any 𝑝𝑝𝑥𝑥. Generate a random 𝑀𝑀′,𝑛𝑛 code according to 𝑝𝑝𝑥𝑥 where 𝑀𝑀′ = 2𝑛𝑛 𝑅𝑅+1/𝑛𝑛 :

• For each 𝑗𝑗 ∈ 𝑀𝑀′ , independently, 𝑿𝑿(𝑗𝑗) = 𝑋𝑋1
𝑗𝑗 𝑋𝑋2

𝑗𝑗 ⋯𝑋𝑋𝑛𝑛
𝑗𝑗 where 𝑋𝑋𝑖𝑖

𝑗𝑗 ~𝑝𝑝𝑥𝑥 independently.

• Sample 𝐽𝐽 ∈ 𝑀𝑀′ at random. Consider 𝒀𝒀~𝑝𝑝 ⋅ |𝑿𝑿(𝐽𝐽) and a jointly typical decoder 𝑔𝑔.

• Claim. Pr
𝑀𝑀,𝑛𝑛 code,

𝐽𝐽, 𝒀𝒀~𝑝𝑝 ⋅|𝑿𝑿(𝐽𝐽)

𝑔𝑔 𝒀𝒀 ≠ 𝐽𝐽 is small. → ∃ a 𝑀𝑀,𝑛𝑛 code with small Pr
𝐽𝐽, 𝒀𝒀~𝑝𝑝 ⋅|𝑿𝑿(𝐽𝐽)

𝑔𝑔 𝒀𝒀 ≠ 𝐽𝐽 .

• Removing the worst half of codewords ensures 𝜆𝜆max = max
𝑗𝑗∈ 𝑀𝑀

Pr
𝒀𝒀~𝑝𝑝 ⋅|𝐱𝐱(𝑗𝑗)

𝑔𝑔 𝒀𝒀 ≠ 𝑗𝑗 is also small.

Theorem (part 1)
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Rate decreases by 1/𝑛𝑛.

Sample a codeword 𝐗𝐗(𝐽𝐽) at random



Consider sufficiently large 𝑛𝑛.
By AEP, 

𝐲𝐲 𝑝𝑝 𝐲𝐲 ≈ 2−𝑛𝑛𝑛𝑛 𝑌𝑌 ≈ 2𝑛𝑛𝑛𝑛 𝑌𝑌

Similarly, given typical 𝐱𝐱,
𝐲𝐲 𝑝𝑝 𝐲𝐲|𝐱𝐱 ≈ 2−𝑛𝑛𝑛𝑛 𝑌𝑌|𝑋𝑋 ≈ 2𝑛𝑛𝑛𝑛 𝑌𝑌|𝑋𝑋

Intuitive Idea
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Consider sufficiently large 𝑛𝑛.
By AEP, 

𝐲𝐲 𝑝𝑝 𝐲𝐲 ≈ 2−𝑛𝑛𝑛𝑛 𝑌𝑌 ≈ 2𝑛𝑛𝑛𝑛 𝑌𝑌

Similarly, given typical 𝐱𝐱,
𝐲𝐲 𝑝𝑝 𝐲𝐲|𝐱𝐱 ≈ 2−𝑛𝑛𝑛𝑛 𝑌𝑌|𝑋𝑋 ≈ 2𝑛𝑛𝑛𝑛 𝑌𝑌|𝑋𝑋

Intuitive Idea
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Ideally, we “pack” 2𝑛𝑛𝑛𝑛 𝑌𝑌 /2𝑛𝑛𝑛𝑛 𝑌𝑌|𝑋𝑋 = 2𝑛𝑛𝑛𝑛 𝑋𝑋;𝑌𝑌 number of non-confusable typical 𝐲𝐲 for a given typical 𝐱𝐱.

Joint AEP Independently sampling (about) 𝟐𝟐𝒏𝒏𝒏𝒏 𝑿𝑿;𝒀𝒀 #codewords suffices for non-confusability.

Jointly-typical decoder 𝑔𝑔

𝑔𝑔 𝐲𝐲 = 𝑗𝑗 if 𝐱𝐱 𝑗𝑗 ,𝐲𝐲 is jointly typical and no other 𝑗𝑗′ exists such that 𝐱𝐱 𝑗𝑗′ ,𝐲𝐲 is jointly typical.
Otherwise, outputs arbitrary index.

(which is sub-optimal compared to 𝑔𝑔∗)



Joint AEP and Error Bound
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Jointly typical set 𝐴𝐴𝜖𝜖
𝑛𝑛 = (𝐱𝐱,𝐲𝐲) 𝑝𝑝 𝐱𝐱 ≈ 2−𝑛𝑛𝑛𝑛 𝑋𝑋 , 𝑝𝑝 𝐲𝐲 ≈ 2−𝑛𝑛𝑛𝑛 𝑌𝑌 , 𝑝𝑝 𝐱𝐱, 𝐲𝐲 ≈ 2−𝑛𝑛𝑛𝑛 𝑋𝑋,𝑌𝑌

Joint AEP. For sufficiently large 𝑛𝑛,

Pr
𝑿𝑿,𝒀𝒀 ~𝑝𝑝 𝐱𝐱,𝐲𝐲

𝑿𝑿,𝒀𝒀 ∈ 𝐴𝐴𝜖𝜖
𝑛𝑛 ≥ 1 − 𝜖𝜖

𝐴𝐴𝜖𝜖
𝑛𝑛 ≤ 2𝑛𝑛 𝐻𝐻 𝑋𝑋,𝑌𝑌 +𝜖𝜖

1 − 𝜖𝜖 2−𝑛𝑛 𝐼𝐼 𝑋𝑋;𝑌𝑌 +3𝜖𝜖 ≤ Pr
𝑿𝑿~𝑝𝑝 𝐱𝐱
𝒀𝒀~𝑝𝑝(𝐲𝐲)

𝑿𝑿,𝒀𝒀 ∈ 𝐴𝐴𝜖𝜖
𝑛𝑛 ≤ 2−𝑛𝑛 𝐼𝐼 𝑋𝑋;𝑌𝑌 −3𝜖𝜖

Error Bound. Fix any 𝑗𝑗. 

• Pr[ 𝑿𝑿 𝑗𝑗 ,𝒀𝒀 is not jointly typical] < 𝜖𝜖

• For fixed 𝑗𝑗′ ≠ 𝑗𝑗, Pr[ 𝑿𝑿 𝑗𝑗′ ,𝒀𝒀 is jointly typical] ≲ 2−𝑛𝑛𝑛𝑛 𝑋𝑋;𝑌𝑌

→ Pr[∃ 𝑗𝑗′ ≠ 𝑗𝑗 ∶ 𝑿𝑿 𝑗𝑗′ ,𝒀𝒀 is jointly typical] ≲ 𝑀𝑀′ − 1 2−𝑛𝑛𝑛𝑛 𝑋𝑋;𝑌𝑌 ≲ 𝜖𝜖
Union bound

Pr
𝑀𝑀,𝑛𝑛 code,

𝐽𝐽, 𝒀𝒀~𝑝𝑝 ⋅|𝑿𝑿(𝐽𝐽)

𝑔𝑔 𝒀𝒀 ≠ 𝐽𝐽 ≲ 2𝜖𝜖

Holds if 𝑅𝑅 ≲ 𝐼𝐼 𝑋𝑋;𝑌𝑌

contains most of the probability

cardinality ≾ 2𝑛𝑛𝑛𝑛 𝑋𝑋

Independent 𝑿𝑿,𝒀𝒀 being jointly 
typical is exponentially small

𝑿𝑿 𝑗𝑗′ and 𝒀𝒀 are independent



The following holds for any discrete memoryless channel 𝑄𝑄 = 𝒳𝒳, 𝑝𝑝 𝑦𝑦|𝑥𝑥 ,𝒴𝒴 .
Any 2𝑛𝑛𝑛𝑛 ,𝑛𝑛 code with 𝑅𝑅 > 𝐶𝐶 ≔ max

𝑝𝑝𝑥𝑥
𝐼𝐼 𝑋𝑋;𝑌𝑌 has 𝜆𝜆avg bounded away from 0 for all 𝑛𝑛.

Proof sketch)

• For fixed encoder and decoder, we have 𝐽𝐽 → 𝑿𝑿(𝐽𝐽) → 𝒀𝒀 → 𝑔𝑔(𝒀𝒀).

𝐻𝐻 𝐽𝐽 = 𝐻𝐻 𝐽𝐽|𝑔𝑔(𝒀𝒀) + 𝐼𝐼 𝐽𝐽;𝑔𝑔(𝒀𝒀)

𝐻𝐻 𝐽𝐽 ≤ 𝐻𝐻 𝐽𝐽|𝑔𝑔(𝒀𝒀) + 𝐼𝐼 𝑿𝑿 𝐽𝐽 ;𝒀𝒀

𝐻𝐻 𝐽𝐽 ≤ 1 + Pr 𝐽𝐽 ≠ 𝑔𝑔 𝒀𝒀 log 𝑀𝑀 − 1 + 𝐼𝐼 𝑿𝑿 𝐽𝐽 ;𝒀𝒀

𝐻𝐻 𝐽𝐽 ≤ 1 + Pr 𝐽𝐽 ≠ 𝑔𝑔 𝒀𝒀 𝑛𝑛𝑛𝑛 + 𝑛𝑛𝐶𝐶

Assuming 𝐽𝐽 is sampled from a uniform distribution, 𝐻𝐻 𝐽𝐽 = log 2𝑛𝑛𝑛𝑛 ≈ 𝑛𝑛𝑛𝑛 and thus 

Pr 𝐽𝐽 ≠ 𝑔𝑔 𝒀𝒀 ≥ 1 −
𝐶𝐶
𝑅𝑅
−

1
𝑛𝑛𝑛𝑛

.

Theorem (part 2)
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Fano’s inequality

Data processing

Doing 𝑛𝑛 transmissions;
𝐼𝐼 𝑋𝑋;𝑌𝑌 per transmission.



The following holds for any discrete memoryless channel 𝑄𝑄 = 𝒳𝒳, 𝑝𝑝 𝑦𝑦|𝑥𝑥 ,𝒴𝒴 .
Any 2𝑛𝑛𝑛𝑛 ,𝑛𝑛 code with 𝑅𝑅 > 𝐶𝐶 ≔ max

𝑝𝑝𝑥𝑥
𝐼𝐼 𝑋𝑋;𝑌𝑌 has 𝜆𝜆avg ≈ 1 for all sufficiently large 𝑛𝑛.

Stronger Theorem (part 2)
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Rate Distortion Theory
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We have 𝑛𝑛 i.i.d. RVs.
Source coding theorem says
with a distortion function 𝑑𝑑 𝐱𝐱, �𝐱𝐱 ≔ 𝕀𝕀𝐱𝐱≠�𝐱𝐱,
• if 𝑅𝑅 < 𝐻𝐻, then 𝔼𝔼 𝑑𝑑 𝑿𝑿, �𝑿𝑿 ≤ 1 − 𝜖𝜖 is not possible (when 𝑛𝑛 is large);
• if 𝑅𝑅 > 𝐻𝐻, then 𝔼𝔼 𝑑𝑑 𝑿𝑿, �𝑿𝑿 ≤ 𝜖𝜖 is possible (when 𝑛𝑛 is large).
Rate distortion theory says
with a separable distortion function 𝑑𝑑(⋅,⋅), i.e., 𝑑𝑑 𝐱𝐱, �𝐱𝐱 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝑥𝑥𝑖𝑖 , �𝑥𝑥𝑖𝑖 ,

• if 𝑅𝑅 < ?, then 𝔼𝔼 𝑑𝑑 𝑿𝑿, �𝑿𝑿 ≤ 𝐷𝐷 is not possible;
• if 𝑅𝑅 > ?, then 𝔼𝔼 𝑑𝑑 𝑿𝑿, �𝑿𝑿 ≤ 𝐷𝐷 is possible.



Consider a (per symbol) distortion function 𝑑𝑑 𝑥𝑥, �𝑥𝑥 , e.g., 𝑑𝑑 𝑥𝑥, �𝑥𝑥 = 𝕀𝕀x≠�x.
A compression scheme 𝑓𝑓,𝑔𝑔 𝑛𝑛,𝑅𝑅 compresses 𝑛𝑛 symbols with 𝑅𝑅 bits per symbol.

• Codebook (for decoding): 𝑗𝑗, �𝐱𝐱 𝑗𝑗
𝑗𝑗=1
2𝑛𝑛𝑛𝑛

Distortion of 𝑓𝑓,𝑔𝑔 𝑛𝑛,𝑅𝑅= 𝔼𝔼𝑿𝑿 𝑑𝑑 𝑿𝑿,𝑔𝑔 𝑓𝑓 𝑿𝑿 .

𝑅𝑅,𝐷𝐷 is achievable if for any 𝛿𝛿 > 0, 

there exist a scheme 𝑓𝑓,𝑔𝑔 𝑛𝑛,𝑅𝑅 that compresses 𝑛𝑛 i.i.d. symbols with distortion ≤ 𝐷𝐷 + 𝛿𝛿. 

Rate distortion function 𝑅𝑅 𝐷𝐷 = min
𝑅𝑅,𝐷𝐷 achievable

𝑅𝑅

Assume, given a distribution 𝑝𝑝 𝑥𝑥 over 𝒳𝒳, we wish to find a “test channel” 𝒳𝒳, 𝑝𝑝 �𝑥𝑥|𝑥𝑥 ,𝒳𝒳 with 
distortion at most 𝐷𝐷 such that it conveys a minimum amount of information.

𝑅𝑅 𝐼𝐼 𝐷𝐷 ≔ min
𝑝𝑝 �𝑥𝑥|𝑥𝑥 ∶ 𝔼𝔼

𝑋𝑋~𝑝𝑝(𝑥𝑥)
�𝑋𝑋~𝑝𝑝 ⋅|𝑋𝑋

𝑑𝑑 𝑋𝑋, �𝑋𝑋 ≤𝐷𝐷
𝐼𝐼 𝑋𝑋; �𝑋𝑋

Rate and Distortion
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i.e., 𝑛𝑛𝑛𝑛 ∈ ℕ bits in total.

and 𝑑𝑑 𝑥𝑥, �𝑥𝑥 < ∞.



Theorem. 𝑅𝑅 𝐷𝐷 = 𝑅𝑅 𝐼𝐼 𝐷𝐷 .

proof sketch)

• Any 𝑓𝑓,𝑔𝑔 𝑛𝑛,𝑅𝑅 with distortion ≤ 𝐷𝐷 must satisfy 𝑅𝑅 ≥ 𝑅𝑅 𝐼𝐼 𝐷𝐷 .

• 𝑅𝑅 𝐼𝐼 𝐷𝐷 is nonincreasing and convex in 𝐷𝐷.

• 𝑑𝑑 is separable.

• Data inequalities.

• 𝑅𝑅 𝐼𝐼 𝐷𝐷 ,𝐷𝐷 is achievable.

• Ideally, construct a codebook 𝑗𝑗, �𝐱𝐱 𝑗𝑗
𝑗𝑗=1
2𝑛𝑛𝑅𝑅

𝐼𝐼 𝐷𝐷
that “covers” all typical 𝐱𝐱 within distortion 𝐷𝐷.

• (Joint) Distortion AEP

Independently sampling 𝟐𝟐𝒏𝒏𝑹𝑹 number of typical �𝐱𝐱 suffices for covering all typical 𝐱𝐱.

Rate Distortion Theory

Presented by Changyeol Lee 24



One way to show achievability = show existence of such scheme
• Construct a random scheme 𝑓𝑓,𝑔𝑔 𝑛𝑛,𝑅𝑅 where 𝑅𝑅 > 𝑅𝑅 𝐼𝐼 𝐷𝐷 . Show the expected distortion ≤ 𝐷𝐷. 

One way to construct a random scheme

• Fix a distribution 𝑝𝑝 �𝑥𝑥|𝑥𝑥 with distortion = 𝐷𝐷 → 𝑝𝑝 �𝑥𝑥 is fixed.

• For each 𝑗𝑗 ∈ 2𝑛𝑛𝑛𝑛 , independently, 𝑿𝑿(𝑗𝑗) = 𝑋𝑋1
𝑗𝑗 𝑋𝑋2

𝑗𝑗 ⋯𝑋𝑋𝑛𝑛
𝑗𝑗 where 𝑋𝑋𝑖𝑖

𝑗𝑗 ~𝑝𝑝 �𝑥𝑥 independently.

• Let 𝑔𝑔 𝑗𝑗 = �𝐱𝐱 𝑗𝑗 for each 𝑗𝑗 ∈ 2𝑛𝑛𝑛𝑛 .

• Consider a (jointly) distortion typical 𝑓𝑓.

• 𝑓𝑓 𝐱𝐱 = any 𝑗𝑗 such that  𝐱𝐱, �𝐱𝐱 𝑗𝑗 is distortion typical.

• If there is no 𝑗𝑗 such that 𝐱𝐱, �𝐱𝐱 𝑗𝑗 is distortion typical, outputs arbitrary 𝑗𝑗.

Claim. Random scheme has distortion ≤ 𝐷𝐷 + 𝛿𝛿. → There is a scheme with distortion ≤ 𝐷𝐷 + 𝛿𝛿.

Achievability
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Fix a test channel.



(Jointly) Distortion typical set

𝐴𝐴𝑑𝑑 ⋅,⋅, ,𝜖𝜖
𝑛𝑛 = (𝐱𝐱,𝐲𝐲) 𝑝𝑝 𝐱𝐱 ≈ 2−𝑛𝑛𝑛𝑛 𝑋𝑋 , 𝑝𝑝 𝐲𝐲 ≈ 2−𝑛𝑛𝑛𝑛 𝑌𝑌 , 𝑝𝑝 𝐱𝐱,𝐲𝐲 ≈ 2−𝑛𝑛𝑛𝑛 𝑋𝑋,𝑌𝑌 ,𝑑𝑑 𝐱𝐱, 𝐲𝐲 ≈ 𝔼𝔼 𝑑𝑑 𝑿𝑿,𝒀𝒀

Since 𝑑𝑑 𝐱𝐱, 𝐲𝐲 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑑𝑑 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 is separable, the law of large number can be applied. 

Joint (Distortion) AEP. For sufficiently large 𝑛𝑛,
Pr

𝑿𝑿,𝒀𝒀 ~𝑝𝑝 𝐱𝐱,𝐲𝐲
𝑿𝑿,𝒀𝒀 ∈ 𝐴𝐴𝑑𝑑,𝜖𝜖

𝑛𝑛 ≥ 1 − 𝜖𝜖

Distortion Bound.
• 𝑿𝑿 is distortion typical with some �𝑿𝑿 → Contribution to distortion ≈ 𝐷𝐷
• Pr[𝑿𝑿 is not distortion typical with any �𝑿𝑿] ⋅ max𝑑𝑑 𝐱𝐱, �𝐱𝐱 → Contribution to distortion ≈ 0

* Stronger sense of typicality upper-bounds the distortion w.h.p., i.e., Pr 𝑑𝑑 𝐗𝐗, �𝐗𝐗 > 𝐷𝐷 + 𝛿𝛿 ≈ 0

(Joint) Distortion AEP
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This probability goes to zero exponentially fast if 𝑅𝑅 > 𝐼𝐼 𝑋𝑋; �𝑋𝑋 .

contains most of the probability

Since 𝑑𝑑 𝑥𝑥, �𝑥𝑥 is bounded.



We showed 𝑅𝑅 𝐷𝐷 = min
𝑝𝑝 �𝑥𝑥|𝑥𝑥 ∶ 𝔼𝔼

𝑋𝑋~𝑝𝑝(𝑥𝑥)
�𝑋𝑋~𝑝𝑝 �𝑥𝑥|𝑋𝑋

𝑑𝑑 𝑋𝑋, �𝑋𝑋 ≤𝐷𝐷
𝐼𝐼 𝑋𝑋; �𝑋𝑋 .

Solve the minimization problem of a convex function over the convex set of some distributions. 
→ We obtain an optimal 𝑝𝑝 �𝑥𝑥|𝑥𝑥 .
Blahut-Arimoto algorithm computes two alternating minimization iteratively.
• Also converges to an optimal 𝑝𝑝 �𝑥𝑥|𝑥𝑥 .

Characterization of 𝑅𝑅 𝐷𝐷
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When given a discrete memoryless channel with a bounded separable distortion function,
the distortion 𝐷𝐷 is achievable iff 𝐶𝐶 > 𝑅𝑅 𝐷𝐷 .

Channel Coding Theorem (part 3)



Differential Entropy
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Continuous Random variable



Consider a continuous random variable 𝑋𝑋 with density 𝑓𝑓.
Divide range of 𝑋𝑋 into bins of length Δ.

Let 𝑥𝑥𝑖𝑖 be a value such that 𝑓𝑓 𝑥𝑥𝑖𝑖 ⋅ Δ = ∫𝑖𝑖Δ
𝑖𝑖+1 Δ 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑.

Consider a discrete random variable 𝑋𝑋Δ where 𝑋𝑋Δ = 𝑥𝑥𝑖𝑖 with probability 𝑓𝑓 𝑥𝑥𝑖𝑖 Δ.

𝐻𝐻 𝑋𝑋Δ = −�
𝑖𝑖=−∞

∞
𝑓𝑓 𝑥𝑥𝑖𝑖 Δ log 𝑓𝑓 𝑥𝑥𝑖𝑖 Δ = −�

𝑖𝑖=−∞

∞
𝑓𝑓 𝑥𝑥𝑖𝑖 Δ log𝑓𝑓 𝑥𝑥𝑖𝑖 − logΔ

As Δ → 0, , 𝐻𝐻 𝑋𝑋Δ + logΔ → −∫−∞
∞ 𝑓𝑓 𝑥𝑥 log𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑.

Differential Entropy

ℎ 𝑋𝑋 = ℎ 𝑓𝑓 = −�
−∞

∞
𝑓𝑓 𝑥𝑥 log 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑

Differential Entropy
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if 𝑓𝑓 𝑥𝑥 log𝑓𝑓 𝑥𝑥 is Riemann integrable



• ℎ ≠ amount of information (or entropy of quantized continuous RV)
• ℎ 𝑓𝑓 < 0 is possible. Consider a density function 𝑓𝑓 that corresponds to 𝑈𝑈 0,1/4 . 

ℎ 𝑓𝑓 = −�
0

1/4
4 log 4𝑑𝑑𝑑𝑑 = −2

• Translation does not change ℎ. ℎ 𝑋𝑋 = ℎ 𝑋𝑋 + 𝑐𝑐 . 

• Scaling does change ℎ. ℎ 𝑎𝑎𝑎𝑎 = ℎ 𝑋𝑋 + log 𝑎𝑎
• Differential entropy ℎ 𝑋𝑋 of gaussian RV 𝑋𝑋~N 0,𝜎𝜎2 = 1

2
log 2𝜋𝜋𝜎𝜎2𝑒𝑒

ℎ 𝑓𝑓 = −�
−∞

∞
𝑓𝑓 𝑥𝑥 log𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 = −�

−∞

∞
𝑓𝑓 𝑥𝑥 log

1
2𝜋𝜋𝜎𝜎2

−
𝑥𝑥2

2𝜎𝜎2
log 𝑒𝑒 𝑑𝑑𝑑𝑑

ℎ 𝑓𝑓 =
1
2

log 2𝜋𝜋𝜎𝜎2 +
𝔼𝔼𝑋𝑋~𝑁𝑁 0,𝜎𝜎2 𝑋𝑋2

2𝜎𝜎2
log 𝑒𝑒 =

1
2

log 2𝜋𝜋𝜎𝜎2 +
1
2

log 𝑒𝑒 =
1
2

log 2𝜋𝜋𝜎𝜎2𝑒𝑒

Properties of Differential Entropy
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𝑋𝑋~𝑓𝑓 𝑥𝑥 =
1
2𝜋𝜋𝜎𝜎2

𝑒𝑒−
𝑥𝑥2
2𝜎𝜎2



Kullback-Leibler divergence between PDFs 𝑓𝑓 and 𝑔𝑔

𝐷𝐷 𝑓𝑓 ∥ 𝑔𝑔 = ��𝑓𝑓 𝑥𝑥1 log
𝑓𝑓(𝑥𝑥1)
𝑔𝑔(𝑥𝑥2)

𝑑𝑑𝑥𝑥1 𝑑𝑑𝑥𝑥2

Mutual information between 𝑋𝑋 and 𝑌𝑌 with joint density 𝑓𝑓 𝑥𝑥,𝑦𝑦

𝐼𝐼 𝑋𝑋;𝑌𝑌 = ��𝑓𝑓 𝑥𝑥,𝑦𝑦 log
𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑓𝑓 𝑥𝑥 𝑓𝑓(𝑦𝑦)

𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝐼𝐼 𝑋𝑋;𝑌𝑌 = 𝐷𝐷 𝑓𝑓 𝑥𝑥,𝑦𝑦 ∥ 𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑦𝑦
𝐼𝐼 𝑋𝑋;𝑌𝑌 = ℎ 𝑋𝑋 − ℎ 𝑋𝑋|𝑌𝑌 = ℎ 𝑌𝑌 − ℎ 𝑌𝑌|𝑋𝑋
𝐼𝐼 𝑋𝑋;𝑌𝑌 ≈ 𝐼𝐼 𝑋𝑋Δ;𝑌𝑌Δ

Theorem. 𝐷𝐷 𝑓𝑓 ∥ 𝑔𝑔 ≥ 0 with = iff 𝑓𝑓 = 𝑔𝑔.
Corollary. 𝐼𝐼 𝑋𝑋;𝑌𝑌 ≥ 0 with = iff 𝑋𝑋 and 𝑌𝑌 are independent.
Corollary. ℎ 𝑋𝑋 𝑌𝑌 ≤ ℎ 𝑋𝑋 with = iff 𝑋𝑋 and 𝑌𝑌 are independent. 
Corollary. If 𝑋𝑋 be a RV with support −𝑎𝑎, 𝑎𝑎 , ℎ 𝑋𝑋 ≤ ℎ U −𝑎𝑎, 𝑎𝑎 with equality iff 𝑋𝑋~U −𝑎𝑎,𝑎𝑎 .
Corollary. If 𝑋𝑋 be a RV with a variance 𝜎𝜎2, ℎ 𝑋𝑋 ≤ ℎ(N 0,𝜎𝜎2 ) with equality iff 𝑋𝑋~N 0,𝜎𝜎2 .

KL Divergence and Mutual Information
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Consider a sequence of i.i.d. RVs 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛.
For any 𝜖𝜖 > 0, for all sufficiently large 𝑛𝑛,

Pr 2−𝑛𝑛 ℎ 𝑋𝑋 +𝜖𝜖 < 𝑓𝑓 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 < 2−𝑛𝑛 ℎ 𝑋𝑋 −𝜖𝜖 ≥ 1 − 𝜖𝜖.

The typical set 𝐴𝐴𝜖𝜖
𝑛𝑛 w.r.t. 𝑓𝑓 is the set of sequence 𝐱𝐱 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 𝑆𝑆𝑛𝑛 such that

2−𝑛𝑛 ℎ 𝑋𝑋 +𝜖𝜖 < 𝑓𝑓 𝐱𝐱 < 2−𝑛𝑛 ℎ 𝑋𝑋 −𝜖𝜖 .
AEP. For sufficiently large 𝑛𝑛,

Pr 𝐗𝐗 ∈ 𝐴𝐴𝜖𝜖
𝑛𝑛 ≥ 1 − 𝜖𝜖 and 1 − 𝜖𝜖 2𝑛𝑛 ℎ 𝑋𝑋 −𝜖𝜖 ≤ Vol 𝐴𝐴𝜖𝜖

𝑛𝑛 ≤ 2𝑛𝑛 ℎ 𝑋𝑋 +𝜖𝜖 .

Let 𝐵𝐵𝛿𝛿
𝑛𝑛 ⊆ 𝑆𝑆𝑛𝑛 be a smallest set with Pr 𝐗𝐗 ∈ 𝐵𝐵𝛿𝛿

𝑛𝑛 ≥ 1 − 𝛿𝛿. 

Lemma. Vol 𝐵𝐵𝛿𝛿
𝑛𝑛 ≥ 1 − 𝜖𝜖 − 𝛿𝛿 2𝑛𝑛 ℎ 𝑋𝑋 −𝜖𝜖 ≈ 2𝑛𝑛ℎ 𝑋𝑋 .

𝑨𝑨𝝐𝝐
𝒏𝒏 contains most of the probability and essentially has a smallest volume of ≈ 𝟐𝟐𝒏𝒏𝒉𝒉 𝑿𝑿 .

AEP
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𝑆𝑆: support of 𝑓𝑓

contains most of the probability volume ≈ 2𝑛𝑛𝑛 𝑋𝑋



Gaussian Channel
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Previously, we considered discrete-time discrete-space input channel.

Gaussian channel is a discrete-time continuous-space input channel.

We also consider a continuous-time continuous-space input channel
with bandlimit.



In a Gaussian channel, the input space is continuous, e.g., real numbers,
and Gaussian noise is added to the input.

Note that it is a discrete-time channel.

• If no constraint on the input, it has infinite capacity.

• Even if the noise variance > 0, it can transmit infinitely many numbers almost perfectly.

• Common constraint: upper bound on the average power of the input 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛
1
𝑛𝑛
�

𝑖𝑖=1

𝑛𝑛
𝑥𝑥𝑖𝑖2 ≤ 𝑃𝑃

(Discrete-time) Gaussian Channel
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There is a Gaussian channel 𝑄𝑄 with input-space as ℝ, a Gaussian noise N 0,1 and power 

constraint 𝑃𝑃 = 4.

Alice want to send the result of a random coin with 𝑥𝑥 ∈ ℝ (i.e., length 1 codeword) through 𝑄𝑄.
Alice encode the result of the coin to a codeword 𝑋𝑋 where 𝑋𝑋 = 2 if HEAD, 𝑋𝑋 = −2, otherwise.
Bob receives a noisy number 𝑌𝑌(= 𝑋𝑋 + 𝑍𝑍). Bob decodes 𝑌𝑌 to HEAD if 𝑌𝑌 > 0, TAIL, otherwise.

Error-probability
Pr 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = Pr 𝑌𝑌 ≤ 0,𝑋𝑋 = 2 + Pr 𝑌𝑌 > 0,𝑋𝑋 = −2
Pr 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = Pr 𝑍𝑍 ≤ −2,𝑋𝑋 = 2 + Pr 𝑍𝑍 > 2,𝑋𝑋 = −2
Pr 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = Pr 𝑍𝑍 > 2 ≈ 0.022

Example
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The information capacity of the Gaussian channel N 0,𝜎𝜎2 with power constraint 𝑃𝑃
𝐶𝐶 = max

𝑓𝑓 𝑥𝑥 ∶𝔼𝔼𝑋𝑋~𝑓𝑓 𝑋𝑋2 ≤𝑃𝑃
𝐼𝐼 𝑋𝑋;𝑌𝑌

We have 𝐼𝐼 𝑋𝑋;𝑌𝑌 = ℎ 𝑌𝑌 − ℎ 𝑌𝑌 ∣ 𝑋𝑋 = ℎ 𝑌𝑌 − ℎ 𝑍𝑍 ∣ 𝑋𝑋 = ℎ 𝑌𝑌 − ℎ(𝑍𝑍).

Since 𝑍𝑍~N 0,𝜎𝜎2 , we have ℎ 𝑍𝑍 = 1
2

log 2𝜋𝜋𝜎𝜎2𝑒𝑒

Moreover, the variance of 𝑌𝑌 is 𝔼𝔼 𝑌𝑌2 = 𝔼𝔼 𝑋𝑋2 + 2𝑋𝑋𝑋𝑋 + 𝑍𝑍2 = 𝑃𝑃 + 𝜎𝜎2.

ℎ 𝑌𝑌 ≤ ℎ N 0,𝑃𝑃 + 𝜎𝜎2 =
1
2

log 2𝜋𝜋(𝑃𝑃 + 𝜎𝜎2)𝑒𝑒
Therefore,

𝐶𝐶 =
1
2

log 1 +
𝑃𝑃
𝜎𝜎2

Channel Capacity
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(𝑴𝑴,𝒏𝒏) code for a channel N 0,𝜎𝜎2 with power constraint 𝑃𝑃
• a set of indices(data) {1, … ,𝑀𝑀}

• a set of codewords 𝐱𝐱(1), … , 𝐱𝐱(𝑀𝑀)

• 𝐱𝐱(𝑗𝑗) = 𝑥𝑥1
𝑗𝑗 𝑥𝑥1

𝑗𝑗 ⋯𝑥𝑥𝑛𝑛
𝑗𝑗 such that 𝑥𝑥1

𝑗𝑗 2
+ 𝑥𝑥2

𝑗𝑗 2
+ ⋯+ 𝑥𝑥𝑛𝑛

𝑗𝑗 2
≤ 𝑛𝑛𝑃𝑃

A decoder 𝑔𝑔 guess an index among 𝑀𝑀 .

Rate 𝑅𝑅 of (𝑀𝑀,𝑛𝑛) code for 𝑄𝑄

𝑅𝑅 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

#𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
=

log𝑀𝑀
𝑛𝑛

Maximal probability of error (for a fixed channel 𝑄𝑄 and fixed (𝑀𝑀,𝑛𝑛) code for 𝑄𝑄)
𝜆𝜆max ≔ max

𝑗𝑗∈{1,…,𝑀𝑀}
Pr

𝒁𝒁~N𝑛𝑛 0,𝜎𝜎2
𝑔𝑔 𝒁𝒁 + 𝐱𝐱 𝑗𝑗 ≠ 𝑗𝑗

Code, Decode, Rate, Error
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The following holds for any Gaussian channel 𝑄𝑄 with N 0,𝜎𝜎2 with power constraint 𝑃𝑃.
1) For any 𝜖𝜖 > 0 and 𝑅𝑅 < 𝐶𝐶, there exists a 𝑀𝑀 ≔ 2𝑛𝑛𝑛𝑛 ,𝑛𝑛 code for 𝑄𝑄 such that 

𝜆𝜆max < 𝜖𝜖 for all sufficiently large 𝑛𝑛.

2) Any 2𝑛𝑛𝑛𝑛 ,𝑛𝑛 code with 𝑅𝑅 > 𝐶𝐶 has 𝜆𝜆avg bounded away from 0 for all 𝑛𝑛.

For part 1, it uses Joint AEP.

Ideally, we “pack” non-confusable typical 𝐲𝐲 for a given typical 𝐱𝐱.

Joint AEP says independent sampling suffices to achieve this.

For part 2, it utilizes data processing and Fano’s inequality.

Theorem
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Previously, we considered discrete-time channels. (𝑛𝑛 usage of given channel)
Now, consider a continuous-time Gaussian channel.

• an input signal 𝑥𝑥 𝑡𝑡

• additive white Gaussian noise 𝑍𝑍 𝑡𝑡

• power constraint 𝑃𝑃 (defined in a continuous manner)

Consider a bandlimited (continuous-time) Gaussian channel

• Channel cuts out all frequencies greater than 𝑊𝑊 (e.g., by applying a bandpass filter)

Nyquist-Shannon’s Theorem
Sampling a signal that is bandlimited to 𝑊𝑊 at a sampling rate 1

2𝑊𝑊
is sufficient for the reconstruction.

Discretize input signal. → Send through discrete-time channel for multiple times.

Continuous-time Gaussian Channel and Bandlimit
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Consider a continuous-time Gaussian channel 𝑄𝑄 with
• bandwidth 𝑊𝑊 Hz, power 𝑃𝑃, and power spectral density of noise 𝑁𝑁0/2 W/Hz.

By Nyquist-Shannon’s theorem, it is equivalent to 2𝑊𝑊 usage (per sec) of a discrete-time 

Gaussian channel 𝑄𝑄′ with power constraint 𝑃𝑃/2𝑊𝑊, and noise N 0,𝑁𝑁0/2 of 

Note the capacity of 𝑄𝑄′ is 𝐶𝐶′ = 1
2

log 1 + 𝑃𝑃
𝑊𝑊𝑁𝑁0

.

Then the capacity of 𝑄𝑄 is 

𝐶𝐶 = 2𝑊𝑊 ⋅ 𝐶𝐶𝐶 = 𝑊𝑊 log 1 +
𝑃𝑃

𝑊𝑊𝑁𝑁0

Capacity of Bandlimited Gaussian Channel
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Statistics

Presented by Changyeol Lee 41

Type gives a stronger sense of AEP.



type 𝐱𝐱 : type of a sequence 𝐱𝐱, i.e., the frequency of each symbol in 𝒳𝒳
typeclass 𝑡𝑡 : type class of type 𝒕𝒕, i.e., a set of sequence (of length 𝑛𝑛) whose type is 𝑡𝑡

Observation.

Exponential #sequence of length 𝑛𝑛 (= 𝒳𝒳 𝑛𝑛).

Polynomial #types of a sequence of length 𝑛𝑛 (≤ 𝑛𝑛 + 1 𝒳𝒳 ). 

→ ∃ a type whose type class contains exponentially many sequences.

In fact, every type class contains
1

𝑛𝑛 + 1 𝒳𝒳 2𝑛𝑛𝑛𝑛 𝑡𝑡 ≤ typeclass 𝑡𝑡 ≤ 2𝑛𝑛𝑛𝑛 𝑡𝑡

Type
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0.4 

0.3 

0.2 

0.1 

0.0 

type of acbdaabcba

a b c d e~z

type class of the above type
aaaabbbccd
aaaabbbcdc

…
dccbbbaaaa

type is a distribution over 𝒳𝒳



Consider a sequence of i.i.d. RVs 𝑿𝑿 = 𝑋𝑋1𝑋𝑋2⋯𝑋𝑋𝑛𝑛 where 𝑋𝑋𝑖𝑖~𝑝𝑝.
Note that type(𝑿𝑿) is a random distribution over 𝒳𝒳.

Let typical sequence be a sequence 𝐱𝐱 ∈ 𝒳𝒳𝑛𝑛 such that 𝐷𝐷 type(𝐱𝐱) ∥ 𝑝𝑝 ≈ 0.

“AEP” (for type). If 𝑛𝑛 is sufficiently large, Pr 𝐷𝐷 type(𝑿𝑿) ∥ 𝑝𝑝 ≈ 0 ≈ 1.

For almost every sequence, the sample frequencies are close to the true probability.

Corollary (Universal Codes). 

Even if 𝑝𝑝 is unknown, we can compress an i.i.d. source with (very close to) 𝐻𝐻 𝑝𝑝 -bit per symbol.

“AEP” for Type and Universal Compression
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Consider a sequence of i.i.d. dices 𝑿𝑿 = 𝑋𝑋1𝑋𝑋2⋯𝑋𝑋𝑛𝑛 where 𝑋𝑋𝑖𝑖~𝑝𝑝.
Q. What is the probability being ∑𝑖𝑖 𝑋𝑋𝑖𝑖 ≥ 4𝑛𝑛?

A1. Central limit theorem, i.e., the distribution of the sample mean → a normal distribution.

• Poor approximation...

A2. Let 𝒯𝒯 be the set of types of sequence whose sum is at least 4𝑛𝑛, i.e.,

𝒯𝒯 = type 𝐱𝐱 ∣ sum 𝐱𝐱 ≥ 4𝑛𝑛 .

Sanov’s theorem says

Pr type 𝑿𝑿 ∈ 𝒯𝒯 ≤ 𝒯𝒯 ⋅ 2−𝑛𝑛𝑛𝑛 𝑡𝑡∗∥𝑝𝑝 ≤ 𝑛𝑛 + 1 𝒳𝒳 ⋅ 2−𝑛𝑛𝑛𝑛 𝑡𝑡∗∥𝑝𝑝 ,

where 𝑡𝑡∗ ∈ argmin𝑡𝑡∈𝒯𝒯 𝐷𝐷 𝑡𝑡 ∥ 𝑝𝑝 .

The probability measure of 𝓣𝓣 is essentially determined by 𝒕𝒕∗.

Sanov’s Theorem
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0.1227 

0.1461 

0.1740 

0.2072 

0.2468 

𝑡𝑡∗

1 2 3 4 5 6

when 𝑝𝑝 is uniform

= probability of large deviation



Consider a sequence of i.i.d. dices 𝑿𝑿 = 𝑋𝑋1𝑋𝑋2⋯𝑋𝑋𝑛𝑛 where 𝑋𝑋𝑖𝑖~𝑝𝑝.
Q. Suppose ∑𝑖𝑖 𝑋𝑋𝑖𝑖 ≥ 4𝑛𝑛. What can we say about the marginal probability distribution?

A. Let 𝒯𝒯 be the set of types of sequence whose sum is at least 4𝑛𝑛, i.e.,

𝒯𝒯 = type 𝐱𝐱 ∣ sum 𝐱𝐱 ≥ 4𝑛𝑛 ,

and let 𝑡𝑡∗ ∈ argmin
𝑡𝑡∈𝒯𝒯

𝐷𝐷 𝑡𝑡 ∥ 𝑝𝑝 be a “closest” distribution in 𝒯𝒯 to 𝑝𝑝.

Conditional limit theorem says, for any 𝑥𝑥 ∈ 𝒳𝒳,

Pr 𝑋𝑋1 = 𝑥𝑥 ∣ type 𝑿𝑿 ∈ 𝒯𝒯 → 𝑡𝑡∗ 𝑥𝑥 .

The probability measure of 𝓣𝓣 is not only determined by 𝒕𝒕∗

but also concentrated near 𝒕𝒕∗ i.e., the conditional type is close to 𝒕𝒕∗.

Conditional Limit Theorem
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if 𝒯𝒯 is a closed convex set.



Consider a sequence of pairs of i.i.d. RVs 𝑿𝑿,𝒀𝒀 = (𝑋𝑋1𝑌𝑌1)(𝑋𝑋2𝑌𝑌2)⋯ 𝑋𝑋𝑛𝑛𝑌𝑌𝑛𝑛 where 𝑋𝑋𝑖𝑖𝑌𝑌𝑖𝑖 ~𝑝𝑝𝑥𝑥𝑝𝑝𝑦𝑦

Recall a jointly typical set 𝐴𝐴𝜖𝜖
𝑛𝑛 = (𝐱𝐱,𝐲𝐲) 𝑝𝑝𝑥𝑥 𝐱𝐱 ≈ 2−𝑛𝑛𝑛𝑛 𝑋𝑋 , 𝑝𝑝𝑦𝑦 𝐲𝐲 ≈ 2−𝑛𝑛𝑛𝑛 𝑌𝑌 , 𝑝𝑝 𝐱𝐱, 𝐲𝐲 ≈ 2−𝑛𝑛𝑛𝑛 𝑋𝑋,𝑌𝑌 .

Let 𝒯𝒯 be the set of types of typical sequence, i.e., 𝒯𝒯 = type 𝐱𝐱,𝐲𝐲 ∣ 𝐱𝐱, 𝐲𝐲 ∈ 𝐴𝐴𝜖𝜖
𝑛𝑛 .

By applying Sanov’s theorem,
Pr

𝑿𝑿,𝒀𝒀 ~ ∏ 𝑝𝑝𝑥𝑥𝑝𝑝𝑦𝑦
type 𝑿𝑿,𝒀𝒀 ∈ 𝒯𝒯 ≤ 𝑛𝑛 + 1 𝒳𝒳 ⋅ 2−𝑛𝑛𝑛𝑛 𝑡𝑡∗∥𝑝𝑝𝑥𝑥𝑝𝑝𝑦𝑦 ,

where 𝑡𝑡∗ ∈ argmin
𝑡𝑡∈𝒯𝒯

𝐷𝐷 𝑡𝑡 ∥ 𝑝𝑝𝑥𝑥𝑝𝑝𝑦𝑦 .

In fact, 𝑡𝑡∗ = 𝑝𝑝 and thus Pr
𝑿𝑿,𝒀𝒀 ~ ∏ 𝑝𝑝𝑥𝑥𝑝𝑝𝑦𝑦

type 𝑿𝑿,𝒀𝒀 ∈ 𝒯𝒯 ≤ 2−𝑛𝑛 𝐼𝐼 𝑋𝑋;𝑌𝑌 +𝜖𝜖 .

Also, by conditional limit theorem, its conditional type is likely to be close to 𝑝𝑝.

Another Proof of Joint AEP
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product of marginal distributions of 𝑝𝑝

when 𝑛𝑛 is sufficiently large.

when 𝑛𝑛 is sufficiently large.



Trade-off between 𝛼𝛼 ≔ Pr choosed 𝑃𝑃2 but 𝑃𝑃1 is true and 𝛽𝛽 ≔ Pr choosed 𝑃𝑃1 but 𝑃𝑃2 is true .
Neyman-Pearson lemma says the optimum test is a (log-)likelihood ratio test.

𝑃𝑃1 𝑿𝑿
𝑃𝑃2 𝑿𝑿

≥ 𝜏𝜏 ⟺ 𝐷𝐷 type 𝑿𝑿 ∥ 𝑃𝑃2 − 𝐷𝐷 type 𝑿𝑿 ∥ 𝑃𝑃1 ≥
1
𝑛𝑛

log 𝜏𝜏

Let 𝒯𝒯 be the set of types that satisfies the above, i.e., 𝑡𝑡 ∈ 𝒯𝒯 accepts 𝑃𝑃1 and 𝑡𝑡 ∉ 𝒯𝒯 accepts 𝑃𝑃2.

Suppose 𝑃𝑃1 was the true distribution, i.e., 𝑿𝑿~∏𝑃𝑃1. Sanov’s theorem gives 

𝛼𝛼 = Pr type 𝑿𝑿 ∉ 𝒯𝒯 = 2−𝑛𝑛 𝐷𝐷 𝑡𝑡1∗∥𝑃𝑃1 −𝜖𝜖1 .

Similarly, if 𝑃𝑃2 was the true distribution, we have

𝛽𝛽 = Pr type 𝑿𝑿 ∈ 𝒯𝒯 = 2−𝑛𝑛 𝐷𝐷 𝑡𝑡2∗∥𝑃𝑃2 −𝜖𝜖2 .

We can also show 𝑡𝑡1∗ = argmin
𝑡𝑡∉𝒯𝒯

𝐷𝐷 𝑡𝑡 ∥ 𝑃𝑃1 = argmin
𝑡𝑡∈𝒯𝒯

𝐷𝐷 𝑡𝑡 ∥ 𝑃𝑃2 = 𝑡𝑡2∗.

Chernoff-Stein lemma says if 𝛼𝛼 < 𝜖𝜖 is small, 𝛽𝛽 ≈ 2−𝑛𝑛 𝐷𝐷 𝑃𝑃1∥𝑃𝑃2 −𝜖𝜖 is best possible.

Two Hypothesis Testing
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by AEP for KL-divergence.



Kolmogorov Complexity
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Source coding says ≈ 𝐻𝐻(𝑋𝑋) bits are required to describe 𝑋𝑋.

What is the shortest length of a program that describes (or outputs) 𝑋𝑋?

“Approximately equal to its entropy”



Consider any universal Turing machine 𝒰𝒰.
𝐾𝐾𝒰𝒰 𝐱𝐱 ≔ min𝑝𝑝:𝒰𝒰 𝑝𝑝 =𝐱𝐱 ℓ 𝑝𝑝 is the length of a shortest program that prints 𝒙𝒙 and halts (w.r.t. 𝒰𝒰).

Consider another Turing machine 𝒜𝒜 and let 𝑝𝑝𝒜𝒜 be a program for 𝒜𝒜 that prints 𝐱𝐱 and halts.

Consider a program 𝑠𝑠𝒜𝒜 for 𝒰𝒰 that simulates 𝒜𝒜 on 𝒰𝒰.

Consider an input 𝑠𝑠𝒜𝒜𝑝𝑝𝒜𝒜 to 𝒰𝒰; it prints 𝑥𝑥 and halts. Therefore,

𝐾𝐾𝒰𝒰 𝐱𝐱 ≤ 𝐾𝐾𝒜𝒜 𝐱𝐱 + 𝑐𝑐𝒜𝒜
where 𝑐𝑐𝒜𝒜 ≔ ℓ 𝑠𝑠𝒜𝒜 is a constant.

𝐾𝐾 𝐱𝐱 differs by a constant for any two universal Turing machines.

Kolmogorov Complexity
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Consider a Kolmogorov complexity when the length of 𝑥𝑥 is additionally given.

𝐾𝐾 𝐱𝐱 ∣ ℓ 𝐱𝐱 is the length of a shortest program such that when given 𝑛𝑛 ≔ ℓ 𝐱𝐱 , prints 𝐱𝐱 and halts.

Consider a program 𝑝𝑝: “print the first 𝑛𝑛-bit 𝑥𝑥1𝑥𝑥2 ⋯𝑥𝑥𝑛𝑛”; its length ℓ 𝑝𝑝 is 𝑛𝑛 + 𝑐𝑐.

𝐾𝐾 𝐱𝐱 ∣ 𝑛𝑛 ≤ 𝑛𝑛 + 𝑐𝑐

However, we cannot say 𝐾𝐾 𝐱𝐱 ≤ 𝑛𝑛 + 𝑐𝑐, since if 𝑛𝑛 is unknown, 𝑝𝑝 does not know when to stop.

Consider a program 𝑝𝑝′: “read the first 2 log𝑛𝑛 + 2 bits and decide 𝑛𝑛; print the next 𝑛𝑛-bit.”

We can upper bound 𝐾𝐾 𝐱𝐱 ≤ 𝐾𝐾 𝐱𝐱 ∣ 𝑛𝑛 + 2 log𝑛𝑛 + 𝑐𝑐𝑐.

Kolmogorov Complexity
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if 𝑛𝑛 = 5 = 101 2 , we can describe 𝑛𝑛 as 110011𝟎𝟎𝟎𝟎 with 𝟎𝟎𝟎𝟎 meaning ‘,’



Consider a sequence of i.i.d. (binary) RVs 𝑿𝑿 = 𝑋𝑋1𝑋𝑋2 ⋯𝑋𝑋𝑛𝑛.

Source coding theorem says 1
𝑛𝑛
𝔼𝔼 𝐾𝐾 𝑿𝑿 ∣ 𝑛𝑛 ≥ 𝐻𝐻(𝑋𝑋).

Consider any type 𝑡𝑡 and its type class typeclass 𝑡𝑡 . We index each 𝐱𝐱 ∈ typeclass 𝑡𝑡 .

Consider a program 𝑝𝑝: “print 𝑖𝑖-th string 𝐱𝐱 of typeclass 𝑡𝑡 ”

• To describe a type, 𝒳𝒳 log𝑛𝑛 bits suffice. To describe an index, 𝑛𝑛𝑛𝑛 𝑡𝑡 bits suffices.

Since the sample frequencies are close to the true probability, we have
1
𝑛𝑛
𝔼𝔼 𝐾𝐾 𝑿𝑿 ∣ 𝑛𝑛 ≤ 𝐻𝐻 𝑋𝑋 +

𝒳𝒳 log𝑛𝑛
𝑛𝑛

+
𝑐𝑐
𝑛𝑛

.
Since 𝐾𝐾 𝐱𝐱 ≤ 𝐾𝐾 𝐱𝐱 ∣ 𝑛𝑛 + 2 log𝑛𝑛 + 𝑐𝑐𝑐,

𝐻𝐻 𝑋𝑋 ≤
1
𝑛𝑛
𝔼𝔼 𝐾𝐾 𝑿𝑿 ≤ 𝐻𝐻 𝑋𝑋 +

1
𝑛𝑛

log 𝒳𝒳 + 𝑐𝑐′

Kolmogorov Complexity (Information Theory)
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A shortest program is a compression of 𝑿𝑿.

Recall typeclass 𝑡𝑡 ≤ 2𝑛𝑛𝑛𝑛 𝑡𝑡

* also holds without expectation



There is no program that decides 𝐾𝐾 𝐱𝐱 = 𝑘𝑘 (for input 𝐱𝐱, 𝑘𝑘). 
• Suppose t.c. there is such program 𝑝𝑝. 

• Fix large 𝑘𝑘 such that it satisfies 𝑘𝑘 > ℓ 𝑝𝑝 + log𝑘𝑘 + 𝑐𝑐.

• Consider a program 𝑞𝑞: “iterates until it finds a string 𝐲𝐲 where 𝐾𝐾 𝐲𝐲 > 𝑘𝑘; print 𝐲𝐲”

• ℓ 𝑞𝑞 = ℓ 𝑝𝑝 + log𝑘𝑘 + 𝑐𝑐

• However, 𝑘𝑘 < 𝐾𝐾 𝐲𝐲 ≤ ℓ 𝑞𝑞 = ℓ 𝑝𝑝 + log𝑘𝑘 + 𝑐𝑐, which is a contradiction. “Berry paradox” 

Shares the essential spirit with the noncomputability of the Halting problem (Chaitin’s number) 

and Gödel's incompleteness theorem.

Kolmogorov Complexity (Theory of Computation)
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(e.g., in lexicographical order)

(by running 𝑝𝑝)



Side Notes
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𝑓𝑓𝜃𝜃 𝑥𝑥 : a family of PMFs indexed by 𝜃𝜃
𝑋𝑋: a sample from a distribution in 𝑓𝑓𝜃𝜃 𝑥𝑥 .
𝑇𝑇 𝑋𝑋 : any statistics (such as sample mean or sample variance).

Then 𝜃𝜃 → 𝑋𝑋 → 𝑇𝑇 𝑋𝑋 , and by the data-processing inequality, for any distribution on 𝜃𝜃,
𝐼𝐼 𝜃𝜃;𝑋𝑋 ≥ 𝐼𝐼 𝜃𝜃;𝑇𝑇 𝑋𝑋 .

If it holds with equality, i.e., 𝜃𝜃 → 𝑇𝑇 𝑋𝑋 → 𝑋𝑋, no information is lost.
We say 𝑇𝑇 𝑋𝑋 is a sufficient statistics for 𝜃𝜃.

Example)
𝑿𝑿 = 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋10 be an i.i.d. sequence of coin w.p. 𝜃𝜃 (chosen randomly).
Let 𝑇𝑇 𝑿𝑿 = 𝑋𝑋1 + ⋯+ 𝑋𝑋10 be the #1’s.
𝑇𝑇 𝑿𝑿 is a sufficient statistics for 𝜃𝜃.

𝐼𝐼 𝜃𝜃;𝑋𝑋 = 𝐻𝐻 𝜃𝜃 − 𝐻𝐻 𝜃𝜃 𝑿𝑿 = 𝐻𝐻 𝜃𝜃 − 𝐻𝐻 𝜃𝜃 𝑇𝑇 𝑿𝑿 = 𝐼𝐼 𝜃𝜃;𝑇𝑇 𝑿𝑿

Sufficient Statistics
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Once we know 𝑇𝑇 𝑋𝑋 , 
the remaining randomness in 𝑋𝑋
does not depend on 𝜃𝜃.



𝑓𝑓𝜃𝜃 𝑥𝑥 : a family of PMFs indexed by 𝜃𝜃
𝑋𝑋: a sample from a distribution in 𝑓𝑓𝜃𝜃 𝑥𝑥 .
𝑇𝑇 𝑋𝑋 : any statistics (such as sample mean or sample variance).

Then 𝜃𝜃 → 𝑋𝑋 → 𝑇𝑇 𝑋𝑋 , and by the data-processing inequality, for any distribution on 𝜃𝜃,
𝐼𝐼 𝜃𝜃;𝑋𝑋 ≥ 𝐼𝐼 𝜃𝜃;𝑇𝑇 𝑋𝑋 .

If it holds with equality, i.e., 𝜃𝜃 → 𝑇𝑇 𝑋𝑋 → 𝑋𝑋, no information is lost.
We say 𝑇𝑇 𝑋𝑋 is a sufficient statistics for 𝜃𝜃.

If 𝑇𝑇 is a function of every other sufficient statistic 𝑈𝑈, i.e., 𝜃𝜃 → 𝑋𝑋 → 𝑈𝑈 𝑋𝑋 → 𝑇𝑇 𝑋𝑋 ,
𝐼𝐼 𝜃𝜃;𝑋𝑋 ≥ 𝐼𝐼 𝜃𝜃;𝑈𝑈 𝑋𝑋 ≥ 𝐼𝐼 𝜃𝜃;𝑇𝑇 𝑋𝑋 .

If it holds with equality, i.e., 𝜃𝜃 → 𝑇𝑇 𝑋𝑋 → 𝑈𝑈 𝑋𝑋 → 𝑋𝑋,
we say 𝑇𝑇 𝑋𝑋 is a minimal sufficient statistics for 𝜃𝜃.

Sufficient Statistics
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Once we know 𝑇𝑇 𝑋𝑋 , 
the remaining randomness in 𝑋𝑋
does not depend on 𝜃𝜃.



Fano’s Inequality

Theorem. For any estimator �𝑋𝑋 s.t. 𝑋𝑋 → 𝑌𝑌 → �𝑋𝑋, we have

𝐻𝐻 𝑋𝑋|𝑌𝑌 ≤ 𝐻𝐻 𝑋𝑋| �𝑋𝑋 ≤ 𝐻𝐻 1 �𝑋𝑋≠𝑋𝑋 + Pr �𝑋𝑋 ≠ 𝑋𝑋 log 𝒳𝒳 ≤ 1 + Pr �𝑋𝑋 ≠ 𝑋𝑋 log 𝒳𝒳 .
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Probability of Error and Entropy

Lemma. If 𝑋𝑋 and 𝑋𝑋′ are i.i.d., Pr 𝑋𝑋 = 𝑋𝑋′ ≥ 2−𝐻𝐻(𝑋𝑋) with equality iff 𝑋𝑋 has a uniform distribution.
Corollary. If 𝑋𝑋~𝑝𝑝 and 𝑋𝑋′~𝑞𝑞 are independent and 𝒳𝒳 = 𝒳𝒳′,

Pr 𝑋𝑋 = 𝑋𝑋′ ≥ 2−𝐻𝐻 𝑝𝑝 −𝐷𝐷(𝑝𝑝∥𝑞𝑞)

Pr 𝑋𝑋 = 𝑋𝑋′ ≥ 2−𝐻𝐻 𝑞𝑞 −𝐷𝐷(𝑞𝑞∥𝑝𝑝)



Stochastic Process and Entropy Rate

Stochastic process 𝑋𝑋𝑖𝑖 : an indexed sequence of RVs with arbitrary dependence

Stationary stochastic process: joint distribution of any subset is invariant w.r.t. shifts in index
Pr 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 = Pr 𝑋𝑋1+ℓ,𝑋𝑋2+ℓ, … ,𝑋𝑋𝑛𝑛+ℓ = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛

Entropy rate
Definition 1 (entropy per symbol).

𝐻𝐻 𝒳𝒳 = lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛

Definition 2 (conditional entropy of the last).

𝐻𝐻′ 𝒳𝒳 = lim
𝑛𝑛→∞

𝐻𝐻 𝑋𝑋𝑛𝑛 ∣ 𝑋𝑋𝑛𝑛−1,𝑋𝑋𝑛𝑛−2, … ,𝑋𝑋1

Theorem. For a stationary stochastic process, 𝐻𝐻 𝒳𝒳 = 𝐻𝐻′ 𝒳𝒳 .
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when the limit exists

when the limit exists



General AEP

AEP
For any i.i.d. process, in probability,

−
1
𝑛𝑛

log𝑝𝑝 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 → 𝐻𝐻(𝑋𝑋)

General AEP (chapter 16)
For any stationary ergodic process, with probability 1,

−
1
𝑛𝑛

log𝑝𝑝 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 → 𝐻𝐻(𝒳𝒳)
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Entropy Rate of Stationary Markov Chain

With initial dist. as stationary dist. 𝜇𝜇, Markov chain is a stationary process.

𝐻𝐻 𝒳𝒳 = 𝐻𝐻′ 𝒳𝒳 = lim
𝑛𝑛→∞

𝐻𝐻 𝑋𝑋𝑛𝑛 ∣ 𝑋𝑋𝑛𝑛−1,𝑋𝑋𝑛𝑛−2, … ,𝑋𝑋1 = lim
𝑛𝑛→∞

𝐻𝐻 𝑋𝑋𝑛𝑛 ∣ 𝑋𝑋𝑛𝑛−1 = 𝐻𝐻 𝑋𝑋2 ∣ 𝑋𝑋1
stationarityMarkovity
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Let 𝑋𝑋𝑖𝑖 be a stationary Markov chain. Consider 𝑌𝑌𝑖𝑖 where 𝑌𝑌𝑖𝑖 = 𝜙𝜙 𝑋𝑋𝑖𝑖 .
How to know 𝐻𝐻 𝑌𝑌𝑛𝑛 ∣ 𝑌𝑌𝑛𝑛−1,𝑌𝑌𝑛𝑛−2, … ,𝑌𝑌1 ≈ 𝐻𝐻 𝒴𝒴 for any 𝑛𝑛?

𝐻𝐻 𝑌𝑌𝑛𝑛 ∣ 𝑌𝑌𝑛𝑛−1,𝑌𝑌𝑛𝑛−2, … ,𝑌𝑌1,𝑋𝑋1 ≤ 𝐻𝐻 𝒴𝒴 ≤ 𝐻𝐻 𝑌𝑌𝑛𝑛 ∣ 𝑌𝑌𝑛𝑛−1,𝑌𝑌𝑛𝑛−2, … ,𝑌𝑌1

lim
𝑛𝑛→∞

𝐻𝐻 𝑌𝑌𝑛𝑛 ∣ 𝑌𝑌𝑛𝑛−1,𝑌𝑌𝑛𝑛−2, … ,𝑌𝑌1,𝑋𝑋1 = 𝐻𝐻 𝒴𝒴 = lim
𝑛𝑛→∞

𝐻𝐻 𝑌𝑌𝑛𝑛 ∣ 𝑌𝑌𝑛𝑛−1,𝑌𝑌𝑛𝑛−2, … ,𝑌𝑌1

Relates to a hidden Markov model (HMM)

Entropy Rate of Functions of Markov Chain

𝑌𝑌𝑖𝑖 does not necessarily form a Markov chain.



Thank You

Presented by Changyeol Lee
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