Information Theory Recap Session

Changyeol Lee (Yonsei University)

Cover and Thomas, Elements of Information Theory (2nd edition)

Entropy

X: a discrete random variable over X with the PMF(probability mass function) $p(\cdot)$. The *entropy* of X : a measure of the uncertainty of X

$$
H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)} = \mathbb{E}_{X \sim p} \left[\log \frac{1}{p(X)} \right]
$$

Fact. $H(X) \geq 0$.

Conditional Entropy

$$
H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X=x) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \frac{1}{p(y|x)} = \mathbb{E}_{(X,Y) \sim p} \left[\log \frac{1}{p(Y|X)} \right]
$$

Chain Rule

 $H(X_1, X_2, ..., X_n) = H(X_1) + H(X_2|X_1) + H(X_3|X_2, X_1) + \cdots + H(X_n|X_{n-1}, ..., X_2, X_1)$

Kullback-Leibler Divergence (Relative Entropy)

Kullback-Leibler divergence between PMFs p and q

$$
D(p \parallel q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right] = \mathbb{E}_{X \sim p} \left[\log \frac{1}{q(X)} \right] - \mathbb{E}_{X \sim p} \left[\log \frac{1}{p(X)} \right]
$$

* $D(p \parallel q) = \infty$ if $\exists x \in \mathcal{X}$ s.t. $p(x) > 0$ and $q(x) = 0$.

* $D(p \parallel q) \neq D(q \parallel p)$, i.e., no symmetricity in general

* $D(p \parallel q) + D(q \parallel r) \not\geq D(p \parallel r)$ and $D(p \parallel q) + D(q \parallel r) \not\leq D(p \parallel r)$ in general

Chain rule

$$
D(p(x, y) || q(x, y)) = D(p(x) || q(x)) + D(p(y|x) || q(y|x))
$$

Mutual Information

Mutual information

• a measure of the amount of information that one RV contains about another RV

$$
I(X;Y) = \mathbb{E}_{(X,Y)\sim p} \left[\log \frac{p(X,Y)}{p(X)p(Y)} \right]
$$

=
$$
D(p(x,y) \parallel p(x)p(y))
$$

=
$$
H(X) - H(X|Y) = H(Y) - H(Y|X)
$$

the reduction in the uncertainty of $X(Y)$ due to the knowledge of $Y(X)$

Conditional Mutual Information

$$
I(X; Y|Z) = H(X|Z) - H(X|Y,Z)
$$

the mutual information of X_1 and X_2 , given X_3 ; not the mutual information of X_1 and $X_2|X_3$.

*** $I(X; Y|Z) \nleq I(X; Y)$ and $I(X; Y|Z) \ngeq I(X; Y)$ in general

Chain Rule

 $I(X_1, X_2, ..., X_n; Y) = I(X_1; Y) + I(X_2; Y | X_1) + I(X_3; Y | X_2, X_1) + \cdots + I(X_n; Y | X_{n-1}, ..., X_2, X_1)$

Information Inequality

Theorem. $D(p \parallel q) \ge 0$ with equality iff $p = q$.

Corollary. $I(X; Y) \ge 0$ with equality if X and Y are independent. **Corollary.** $H(X|Y) \leq H(X)$, i.e., *conditioning only reduces entropy*.

Corollary. $H(X) \leq \log |\mathcal{X}|$ with equality iff p is the uniform distribution.

Data-processing Inequality

By chain rule,

$$
I(X;Z) + I(X;Y|Z) = I(X;Y,Z) = I(X;Y) + I(X;Z|Y)
$$

\nIf $X \to Y \to Z$, then $I(X;Y) \ge I(X;Z)$.
\n**Theorem.** If $X \to Y \to Z$, then $I(X;Y) \ge I(X;Z)$.
\n**Theorem.** If $X \to Y \to Z$, then $I(X;Y) \ge I(X;Y|Z)$.

Source Coding Theorem

We have n i.i.d. RVs.

What is the min #bits required to send the data only with negligible error?

Upper/Lower bound on Compression

We can construct an instantaneous code given a length function $\ell: \mathcal{X} \to \{0,1\}^*$ if

$$
\sum\nolimits_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1.
$$

Shannon compression $\ell(x) := [-\log p(x)]$ gives $\mathbb{E}_{X \sim p}[\ell(X)] < H(X) + 1$.

Theorem. Huffman compression is optimal, i.e., $\mathbb{E}[\ell_{\text{Huffman}}(X)] \leq \mathbb{E}[\ell_{\text{Uniquely Decodable Code}}(X)].$

Any uniquely decodable code with a length function $\ell: \mathcal{X} \to \{0,1\}^*$ must satisfies

$$
\sum\nolimits_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1.
$$

Theorem. $\mathbb{E}[\ell_{\text{Uniquely Decodable Code}}(X)] \geq H(X)$ with equality iff $p(x) = 2^{-\ell(x)}$ for all $x \in \mathcal{X}$.

 $H(X) \leq \mathbb{E}[{\ell}^*(X)] < H(X) + 1$

Upper/Lower bound on Compression

Consider a sequence of (possibly dependent) RVs $X_1, X_2, ..., X_n$ with joint distribution p. Shannon compression gives $\mathbb{E}_{(X_1, X_2, ..., X_n) \sim p} [\ell(X_1, X_2, ..., X_n)] < H(X_1, X_2, ..., X_n) + 1$.

If $X_1, X_2, ..., X_n$ are i.i.d., $H(X_1, X_2, ..., X_n) = H(X)$.

Therefore, the expected length per symbol of an optimal compression is

$$
H(X) \le \frac{1}{n} \mathbb{E} [\ell^* (X_1, X_2, \dots, X_n)] < H(X) + \frac{1}{n}.
$$

 $H(X)$ is the fundamental limit!

Q. What is the fundamental limit if we allow small error in the compression scheme?

AEP (Asymptotic Equipartition Property)

Consider a sequence of i.i.d. RVs $X_1, X_2, ..., X_n$.

For any $\epsilon > 0$, for all sufficiently large n,

$$
\Pr\left[2^{-n(H(X)+\epsilon)} < p(X_1, X_2, \dots, X_n) < 2^{-n(H(X)-\epsilon)}\right] \ge 1 - \epsilon.
$$

The <mark>typical set</mark> $A_{\epsilon}^{(n)}$ w.r.t. p is the set of sequence $\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathcal{X}^n$ such that $2^{-n(H(X)+\epsilon)} < p(\mathbf{x}) < 2^{-n(H(X)-\epsilon)}.$

AEP. For sufficiently large n ,

$$
\Pr\left[\mathbf{X} \in A_{\epsilon}^{(n)}\right] \ge 1 - \epsilon \qquad \text{contains most of the probability}
$$

$$
(1 - \epsilon)2^{n(H(X) - \epsilon)} \le |A_{\epsilon}^{(n)}| \le 2^{n(H(X) + \epsilon)} \qquad \text{cardinality} \approx 2^{nH(X)}
$$

 $A_\epsilon^{(n)}$ contains most of the probability and has a cardinality $\approx 2^{nH(X)}$.

Typical Set is a Smallest Set

Let
$$
B_{\delta}^{(n)} \subseteq \mathcal{X}^n
$$
 be a smallest set with $Pr\left[\mathbf{X} \in B_{\delta}^{(n)}\right] \ge 1 - \delta$.
Lemma. $|B_{\delta}^{(n)}| \ge (1 - \epsilon - \delta)2^{n(H(X) - \epsilon)} \approx 2^{n(H(X))}$.

 $A_\epsilon^{(n)}$ contains most of the probability and \boldsymbol{e} ssentially has a smallest cardinality of $\approx 2^{nH(X)}$.

Source coding theorem.

Consider a sequence of n i.i.d. RVs with entropy H .

(1-1) Using *slightly more than nH* bits admits a lossless compression.

(1-2) With #bits *very close to nH*, $Pr[error] \approx 0$ for sufficiently large *n*

(2) With less than nH bits, $Pr[error] \approx 1$ for sufficiently large n (i.e., all information is lost).

Channel Coding Theorem

Suppose we use n symbols to encode a date to cope with the channel noise. What is the max #data we can send only with negligible error?

Motivation

We have a noisy channel $p(y|x)$.

Alice tosses a coin X and send X to Bob (using single bit).

• amount of information before being sent $= H(X)$

Bob receives a bit Y through a noisy channel.

- amount of information that channel decreased = $H(X|Y)$
- amount of information conveyed by the channel = $H(X) H(X|Y) = I(X,Y)$

Information channel capacity

- Assume for now that we wish to maximize the amount of information conveyed by the channel.
- We do this by choosing a *best* distribution of X.

Channel and Channel Capacity

Discrete memoryless channel Q

 $x:$ an input alphabet (a set of input symbols)

 y : an output alphabet (a set of output symbols)

 ${p(y|x)}_{x \in \mathcal{X}}$: a collection of (conditional) PMFs

Choose a distribution. \rightarrow Capable of sending $I(X; Y)$ amount of information

Channel capacity (choose a *best* distribution)

$$
C = \max_{\text{distribution over } X} I(X;Y) \qquad \text{* maximum is well defined}
$$

Code, Decode, Rate, Error

 $M, n \in \mathbb{N}$

 (M, n) code for a channel $Q = (\mathcal{X}, p(y|x), \mathcal{Y})$ "encoding scheme"

- a set of indices(data) $\{1, ..., M\}$
- a set of codewords $\{x^{(1)},...,x^{(M)}\}$, where $x^{(j)} \in \mathcal{X}^n$

A **decoder** *g* guess an index.

An optimal decoder q^* chooses a posteriori most likely index.

 (M, n) code sends an index with *n* transmissions. **Rate** R of (M, n) code for Q $(\log M)$ -bit

$$
R = \frac{\text{size of data}}{\text{ttransmission}} = \frac{\log M}{n}
$$

Maximal probability of error (for a fixed channel Q and fixed (M, n) code for Q)

$$
\lambda_{\max} := \max_{j \in \{1, \dots, M\}} \Pr_{Y \sim p(\cdot | \mathbf{x}^{(j)})} [g(Y) \neq j]
$$

Achievable Rate

Let us fix n .

Increase rate = Send more information per transmission

```
= Cause more error (possibly)
```
Q. What rate can we prove is *achievable*?

One way to show achievability = show existence of such code

- Show the expected error of a random code is small.
- There must be a code with small error.

One (naïve) way to construct a random code

- Fix a distribution p_x over X. Sample i.i.d. n symbols from p_x for each codeword, independently.
- **A**. $R \lesssim I$ is achievable. i.e., sending 2^{nl} is possible

If p_x is a *best* distribution, $R \leq C$ is achievable.

Theorem (part 1)

The following holds for any discrete memoryless channel $Q = (\mathcal{X}, p(y|x), \mathcal{Y})$. For any $\epsilon > 0$ and $R < C \coloneqq \max_{n} I(X;Y)$, there exists a $(M \coloneqq [2^{nR}], n)$ code for Q such that p_{χ} $\lambda_{\text{max}} < \epsilon$ for all sufficiently large n.

Showing the existence

- Fix any p_x . Generate a random (M',n) code according to p_x where $M' = \lfloor 2^{n(R+1/n)} \rfloor$:
	- For each $j \in [M']$, independently, $X^{(j)} = X_1^{(j)} X_2^{(j)} \cdots X_n^{(j)}$ where $X_i^{(j)} \sim p_x$ independently.
- Sample $J \in [M']$ at random. Consider $Y \sim p(\cdot |X^{(J)})$ and a *jointly typical* decoder g. Sample a codeword $\bar{\mathbf{X}}^{(J)}$ at random
- **Claim.** Pr (M,n) code, $J, Y \sim p(\cdot|X^{(J)})$ $g(Y) \neq J$ is small. \rightarrow ∃ a (M, n) code with small $\Pr_{J, Y \sim p(\cdot | X^{(J)})}[g(Y) \neq J]$.
- Removing the worst half of codewords ensures $\lambda_{\text{max}} = \max_{i \in [M]}$ J∈[M $\Pr_{\substack{\pmb{Y}\sim p(\cdot|\mathbf{x}^{(j)})}}[g(\pmb{Y})\neq j]$ is also small. Rate decreases by $1/n$.

Intuitive Idea

Consider sufficiently large n . By AEP,

$$
\left|\left\{\,\mathbf{y}\mid p(\mathbf{y})\approx 2^{-nH(Y)}\,\right\}\right|\approx 2^{nH(Y)}
$$

Similarly, given typical x,

 $|\mathbf{y} | p(\mathbf{y}|\mathbf{x}) \approx 2^{-nH(Y|X)}\mathbf{|\approx} 2^{nH(Y|X)}$

Intuitive Idea

Consider sufficiently large n . By AEP,

$$
\left|\left\{\mathbf{y} \mid p(\mathbf{y}) \approx 2^{-nH(Y)}\right\}\right| \approx 2^{nH(Y)}
$$

Similarly, given typical x,

 $|\{y \mid p(y|x) \approx 2^{-nH(Y|X)}\}| \approx 2^{nH(Y|X)}$

Ideally, we "pack" $2^{nH(Y)}/2^{nH(Y|X)} = 2^{nI(X;Y)}$ number of non-confusable typical y for a given typical x. Joint AEP Independently sampling (about) $2^{nI(X;Y)}$ #codewords suffices for non-confusability. $\mathsf{\mathsf{Jointly}\text{-}\mathrm{typical}\operatorname{\mathsf{decoder}}\nolimits\mathcal{g}$ $\pmb{\;\;\;}$ (which is sub-optimal compared to g^*) $g({\bf y})=j$ if $\left({{\bf x}^{(j)} ,{\bf y}} \right)$ is *jointly typical* and no other j' exists such that $\left({{\bf x}^{(j')} ,{\bf y}} \right)$ is *jointly typical*.

Otherwise, outputs arbitrary index.

Joint AEP and Error Bound

Jointly typical set $A_{\epsilon}^{(n)} = \{ (x, y) | p(x) \approx 2^{-nH(X)}, p(y) \approx 2^{-nH(Y)}, p(x, y) \approx 2^{-nH(X,Y)} \}$ Joint AEP. For sufficiently large n ,

$$
\Pr_{(X,Y)\sim p(x,y)} \left[(X,Y) \in A_{\epsilon}^{(n)} \right] \ge 1 - \epsilon \qquad \text{contains most of the probability}
$$
\n
$$
\left| A_{\epsilon}^{(n)} \right| \le 2^{n(H(X,Y)+\epsilon)} \qquad \text{cardinality} \lesssim 2^{nH(X)}
$$

$$
(1-\epsilon)2^{-n(I(X;Y)+3\epsilon)} \le \Pr_{\substack{\mathbf{X} \sim p(\mathbf{x}) \\ \mathbf{Y} \sim p(\mathbf{y})}} \left[(\mathbf{X}, \mathbf{Y}) \in A_{\epsilon}^{(n)} \right] \le 2^{-n(I(X;Y)-3\epsilon)} \quad \lim_{\substack{\mathbf{Y} \sim p(\mathbf{Y})}} \frac{1}{\epsilon}
$$

dependent X , Y being jointly pical is *exponentially* small

Error Bound. Fix any *j*.

- $\Pr[\left(X^{(j)},Y\right)$ is not jointly typical] $<\epsilon$
- For fixed $j' \neq j$, $Pr[(X^{(j')}, Y)$ is jointly typical] $\leq 2^{-nI(X;Y)}$ $\pmb{X}^{(j^\prime)}$ and \pmb{Y} are independent

$$
\rightarrow \Pr[\exists j' \neq j : (X^{(j')}, Y) \text{ is jointly typical}] \leq (M' - 1)2^{-nI(X;Y)} \leq \epsilon
$$

Union bound
Holds if $R \leq I(X;Y)$

$$
\Pr_{\substack{(M,n)\text{ code,}\\J,\,Y\sim p(\cdot|X^{(J)})}}[g(Y)\neq J] \lesssim 2\epsilon
$$

ר

Theorem (part 2)

The following holds for any discrete memoryless channel $Q = (\mathcal{X}, p(y|x), \mathcal{Y})$. Any ([2 nR], $n)$ code with $R>C\coloneqq\max\limits_{n_{\mathrm{sc}}}I(X;Y)$ has λ_{avg} bounded away from 0 for all $n.$ $p_{\mathcal{X}}$ Proof sketch)

For fixed encoder and decoder, we have $J \to X^{(1)} \to Y \to g(Y)$.

 $H(J) = H(J|g(Y)) + I(J; g(Y))$ $\leq H(J|g(\boldsymbol{Y})) + I\big(\boldsymbol{X}^{(J)};\boldsymbol{Y}\big)$ Data processing $\leq 1 + Pr[J \neq g(Y)] \log(M - 1) + I(X^{(j)}; Y)$ $\leq 1 + \Pr[J \neq g(Y)] nR + nC$ Doing *n* transmissions; Assuming *I* is sampled from a uniform distribution, $H(I) = \log[2^{nR}] \approx nR$ and thus Fano's inequality $I(X; Y)$ per transmission.

$$
\Pr[J \neq g(Y)] \ge 1 - \frac{C}{R} - \frac{1}{nR}.
$$

Stronger Theorem (part 2)

The following holds for any discrete memoryless channel $Q = (\mathcal{X}, p(y|x), \mathcal{Y})$.

Any ([2 nR], $n)$ code with $R>C\coloneqq\max\limits_{n\geq 0}$ p_{χ} $I(X; Y)$ has $\lambda_{\text{avg}} \approx 1$ for all sufficiently large n .

Rate Distortion Theory

We have n i.i.d. RVs.

Source coding theorem says

with a distortion function $d(\mathbf{x}, \hat{\mathbf{x}}) \coloneqq \mathbb{I}_{\mathbf{x} \neq \hat{\mathbf{x}}},$

- if $R < H$, then $\mathbb{E}[d(X,\widehat{X})] \leq 1 \epsilon$ is not possible (when *n* is large);
- if $R > H$, then $\mathbb{E}[d(X,\widehat{X})] \leq \epsilon$ is possible (when n is large).

Rate distortion theory says

with a separable distortion function $d(\cdot,\cdot)$, i.e., $d(\mathbf{x}, \hat{\mathbf{x}}) =$ 1 $\frac{1}{n} \sum_{i=1}^{n} d(x_i, \hat{x_i}),$

- if $R < ?$, then $\mathbb{E}[d(X,\widehat{X})] \leq D$ is not possible;
- if $R > ?$, then $\mathbb{E}[d(X,\widehat{X})] \leq D$ is possible.

Rate and Distortion

Consider a (per symbol) distortion function $d(x, \hat{x})$, e.g., $d(x, \hat{x}) = \mathbb{I}_{x \neq \hat{x}}$. and $d(x, \hat{x}) < \infty$.

A compression scheme $(f, g)_{n, R}$ compresses n symbols with R bits per symbol. $\,$ i.e., $nR(\in \mathbb{N})$ bits in total.

- Codebook (for decoding): $\left\{j, \mathbf{\hat{x}}^{(j)}\right\}_{j=1}^{2}$ 2^{nR} **Distortion** of $(f, g)_{n,R} = \mathbb{E}_X \left[d\left(X, g(f(X))\right) \right].$
- (R, D) is **achievable** if for any $\delta > 0$,

there exist a scheme $(f, g)_{n,R}$ that compresses n i.i.d. symbols with distortion $\leq D + \delta$.

Rate distortion function $R(D) = \min_{(R,D) \text{ achievable}} R$

Assume, given a distribution $p(x)$ over X, we wish to find a "test channel" $(\mathcal{X}, p(\hat{x}|x), \mathcal{X})$ with distortion at most D such that it conveys a minimum amount of information.

$$
R^{(I)}(D) := \min_{\substack{p(\hat{x}|x) : \mathbb{E} \setminus [d(X,\hat{X})] \leq D \\ \hat{x} \sim p(\cdot|X)}} I(X; \hat{X})
$$

Rate Distortion Theory

Theorem. $R(D) = R^{(I)}(D)$.

proof sketch)

- Any $(f, g)_{n,R}$ with distortion $\leq D$ must satisfy $R \geq R^{(1)}(D)$.
	- $R^{(I)}(D)$ is nonincreasing and convex in D.
	- d is separable.
	- Data inequalities.
- $(R^{(I)}(D), D)$ is achievable.

• Ideally, construct a codebook $\left\{j,\mathbf{\hat{x}}^{(j)}\right\}_{j=1}^{\infty}$ $2^{nR^{(1)}(D)}$ that "covers" all typical ${\bf x}$ within distortion D .

• (Joint) Distortion AEP

Independently sampling 2^{nR} number of typical \hat{x} suffices for covering all typical \bf{x} .

Achievability

One way to show achievability = show existence of such scheme

Construct a random scheme $(f, g)_{n,R}$ where $R > R^{(I)}(D)$. Show the expected distortion $\leq D$.

One way to construct a random scheme

- Fix a distribution $p(\hat{x}|x)$ with distortion $= D \rightarrow p(\hat{x})$ is fixed. Fix a test channel.
- For each $j \in [2^{nR}]$, independently, $X^{(j)} = X_1^{(j)} X_2^{(j)} \cdots X_n^{(j)}$ where $X_i^{(j)} \sim p(\hat{x})$ independently.
	- Let $g(j) = \hat{\mathbf{x}}^{(j)}$ for each $j \in [2^{nR}]$.
- Consider a (*jointly*) *distortion typical* .
	- $f(x) = \text{any } j \text{ such that } (x, \hat{x}^{(j)})$ is distortion typical.
	- If there is no *j* such that $(x, \hat{x}^{(j)})$ is distortion typical, outputs arbitrary *j*.

Claim. Random scheme has distortion $\leq D + \delta$. \rightarrow There is a scheme with distortion $\leq D + \delta$.

(Joint) Distortion AEP

(Jointly) Distortion typical set

$$
A_{d(.,.),\epsilon}^{(n)} = \{ (x, y) | p(x) \approx 2^{-nH(X)}, p(y) \approx 2^{-nH(Y)}, p(x, y) \approx 2^{-nH(X,Y)}, d(x, y) \approx \mathbb{E}[d(X, Y)] \}
$$

Since $d(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} d(x_i, y_i)$ is separable, the law of large number can be applied.

Joint (Distortion) AEP . For sufficiently large n ,

$$
\Pr_{(X,Y)\sim p(x,y)}\left[(X,Y) \in A_{d,\epsilon}^{(n)} \right] \ge 1 - \epsilon \quad \text{contains most of the probability}
$$

Distortion Bound.

- X is distortion typical with some $\widehat{X} \rightarrow$ Contribution to distortion $\approx D$
- Pr[X is not distortion typical with any \widehat{X}] ⋅ max $d(x, \widehat{x}) \rightarrow$ Contribution to distortion ≈ 0 This probability goes to zero *exponentially* fast if $R > I(X; \hat{X})$. Since $d(x, \hat{x})$ is bounded.
- * Stronger sense of typicality upper-bounds the distortion w.h.p., i.e., $Pr[d(X, \hat{X}) > D + \delta] \approx 0$

Characterization of $R(D)$

We showed
$$
R(D) = \min_{p(\hat{x}|x) : \mathbb{E} \atop X \sim p(x)} [d(X,\hat{X})] \le D} I(X;\hat{X}).
$$

 $\hat{x} \sim p(\hat{x}|X)$

Solve the minimization problem of a convex function over the convex set of some distributions.

 \rightarrow We obtain an optimal $p(\hat{x}|x)$.

Blahut-Arimoto algorithm computes two alternating minimization iteratively.

Also converges to an optimal $p(\hat{x}|x)$.

Channel Coding Theorem (part 3)

When given a discrete memoryless channel with a bounded separable distortion function, the distortion D is achievable iff $C > R(D)$.

Differential Entropy

Continuous Random variable

Differential Entropy

Consider a continuous random variable X with density f . Divide range of X into bins of length Δ .

Let x_i be a value such that $f(x_i) \cdot \Delta = \int_{i\Delta}^{(l+1)\Delta} f(x) dx$.

Consider a discrete random variable X^{Δ} where $X^{\Delta} = x_i$ with probability $f(x_i)\Delta$.

$$
H(X^{\Delta}) = -\sum_{i=-\infty}^{\infty} f(x_i) \Delta \log(f(x_i)\Delta) = -\sum_{i=-\infty}^{\infty} f(x_i) \Delta \log f(x_i) - \log \Delta
$$

 $\mathsf{As} \ \Delta \to 0$, , $H(X^{\Delta}) + \log \Delta \to -\int_{-\infty}^{\infty} f(x) \log f(x) \, dx$. if $f(x) \log f(x)$ is Riemann integrable

Differential Entropy

$$
h(X) = h(f) = -\int_{-\infty}^{\infty} f(x) \log f(x) \, dx
$$

Properties of Differential Entropy

- $h \neq$ amount of information (or entropy of quantized continuous RV)
	- $h(f) < 0$ is possible. Consider a density function f that corresponds to $U[0,1/4]$.

$$
h(f) = -\int_0^{1/4} 4\log 4 \, dx = -2
$$

- Translation does not change $h. h(X) = h(X + c)$.
- Scaling does change $h. h(aX) = h(X) + log|a|$
- Differential entropy $h(X)$ of gaussian RV $X \sim N(0, \sigma^2) = \frac{1}{2} \log(2\pi \sigma^2 e)$

$$
X \sim f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}
$$

$$
h(f) = -\int_{-\infty}^{\infty} f(x) \log f(x) dx = -\int_{-\infty}^{\infty} f(x) \left(\log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{x^2}{2\sigma^2} \log e \right) dx
$$

= $\frac{1}{2} \log(2\pi\sigma^2) + \frac{\mathbb{E}_{X \sim N(0,\sigma^2)}[X^2]}{2\sigma^2} \log e = \frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2} \log e = \frac{1}{2} \log(2\pi\sigma^2 e)$

KL Divergence and Mutual Information

Kullback-Leibler divergence between PDFs f and g

$$
D(f \parallel g) = \int \int f(x_1) \log \frac{f(x_1)}{g(x_2)} dx_1 dx_2
$$

Mutual information between X and Y with joint density $f(x, y)$

$$
I(X;Y) = \int \int f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dx dy
$$

= $D(f(x,y) \parallel f(x)f(y))$
= $h(X) - h(X|Y) = h(Y) - h(Y|X)$
 $\approx I(X^{\Delta}; Y^{\Delta})$

Theorem. $D(f || g) \ge 0$ with = iff $f = g$.

Corollary. $I(X; Y) \ge 0$ with = iff X and Y are independent.

Corollary. $h(X|Y) \le h(X)$ with = iff X and Y are independent.

Corollary. If X be a RV with support $[-a, a]$, $h(X) \le h(U[-a, a])$ with equality iff $X \sim U[-a, a]$.

Corollary. If X be a RV with a variance σ^2 , $h(X) \le h(N(0, \sigma^2))$ with equality iff $X \sim N(0, \sigma^2)$.

AEP

Consider a sequence of i.i.d. RVs $X_1, X_2, ..., X_n$.

For any $\epsilon > 0$, for all sufficiently large n,

$$
\Pr\left[2^{-n(h(X)+\epsilon)} < f(X_1, X_2, \dots, X_n) < 2^{-n(h(X)-\epsilon)}\right] \ge 1 - \epsilon.
$$
\nThe **typical set** $A_{\epsilon}^{(n)}$ w.r.t. f is the set of sequence $\mathbf{x} = (x_1, x_2, \dots, x_n) \in S^n$ such that

\n
$$
2^{-n(h(X)+\epsilon)} < f(\mathbf{x}) < 2^{-n(h(X)-\epsilon)}.
$$
\nSuppose f is the set of sequence $\mathbf{x} = (x_1, x_2, \dots, x_n) \in S^n$ such that

 AEP . For sufficiently large n ,

$$
\Pr\left[\mathbf{X} \in A_{\epsilon}^{(n)}\right] \ge 1 - \epsilon \quad \text{and} \quad (1 - \epsilon)2^{n(h(X) - \epsilon)} \le \text{Vol}\left(A_{\epsilon}^{(n)}\right) \le 2^{n(h(X) + \epsilon)}.
$$
\ncontains most of the probability volume $\approx 2^{nh(X)}$ volume.

\nLemma. Vol $\left(B_{\delta}^{(n)}\right) \ge (1 - \epsilon - \delta)2^{n(h(X) - \epsilon)} \approx 2^{nh(X)}.$

 $A_\epsilon^{(n)}$ contains most of the probability and esse*ntially* has a smallest volume of $\approx 2^{nh(X)}$.

Gaussian Channel

Previously, we considered discrete-time discrete-space input channel.

Gaussian channel is a discrete-time continuous-space input channel.

We also consider a continuous-time continuous-space input channel with bandlimit.

(Discrete-time) Gaussian Channel

In a Gaussian channel, the input space is continuous, e.g., real numbers, and Gaussian noise is added to the input.

Note that it is a discrete-time channel.

- If no constraint on the input, it has infinite capacity.
	- Even if the noise variance > 0, it can transmit infinitely many numbers almost perfectly.
- Common constraint: upper bound on the average power of the input $(x_1, x_2, ..., x_n)$

$$
\frac{1}{n} \sum_{i=1}^{n} x_i^2 \le P
$$

Example

There is a Gaussian channel Q with input-space as \mathbb{R} , a Gaussian noise $N(0,1)$ and power constraint $P = 4$.

Alice want to send the result of a random coin with $x \in \mathbb{R}$ (i.e., length 1 codeword) through Q. Alice encode the result of the coin to a codeword X where $X = 2$ if HEAD, $X = -2$, otherwise. Bob receives a noisy number $Y (= X + Z)$. Bob decodes Y to HEAD if $Y > 0$, TAIL, otherwise.

Error-probability

$Pr[error] = Pr[Y \le 0, X = 2] + Pr[Y > 0, X = -2]$ $= Pr[Z \leq -2, X = 2] + Pr[Z > 2, X = -2]$ $= Pr[Z > 2] \approx 0.022$

Channel Capacity

The information capacity of the Gaussian channel N(0, σ^2) with power constraint P

$$
C = \max_{f(x): \mathbb{E}_{X \sim f}[X^2] \le P} I(X;Y)
$$

We have $I(X; Y) = h(Y) - h(Y | X) = h(Y) - h(Z | X) = h(Y) - h(Z)$.

Since $Z \sim N(0, \sigma^2)$, we have $h(Z) = \frac{1}{2} \log(2\pi \sigma^2 e)$

Moreover, the variance of Y is $\mathbb{E}[Y^2] = \mathbb{E}[X^2 + 2XZ + Z^2] = P + \sigma^2$. $h(Y) \leq h(N(0, P + \sigma^2))$ = 1 $\frac{1}{2}$ log(2 π (P + σ^2)e

Therefore,

$$
C = \frac{1}{2}\log\left(1 + \frac{P}{\sigma^2}\right)
$$

Code, Decode, Rate, Error

 (M, n) code for a channel N $(0, \sigma^2)$ with power constraint P

- a set of indices(data) $\{1, ..., M\}$
- a set of codewords $\mathbf{x}^{(1)},...,\mathbf{x}^{(M)}$
	- $\mathbf{x}^{(j)} = x_1^{(j)} x_1^{(j)} \cdots x_n^{(j)}$ such that $x_1^{(j)^2}$ $+ x_2^{\circ}$ $j)^2$ $+ \cdots + x_n$ $j)^2$ $\leq nP$

A **decoder** g guess an index among $[M]$.

Rate R of (M, n) code for Q

$$
R = \frac{\text{size of data}}{\text{ttransmission}} = \frac{\log M}{n}
$$

Maximal probability of error (for a fixed channel Q and fixed (M, n) code for Q) $\lambda_{\text{max}} \coloneqq \max_{i \in \{1, \ldots, n\}}$ J∈{1,…,*M* } $\Pr_{\mathbf{Z} \sim \mathrm{N}^n(0,\sigma^2)}[g(\mathbf{Z} + \mathbf{x}^{(j)}) \neq j]$

Theorem

The following holds for any Gaussian channel Q with N(0, σ^2) with power constraint P.

- 1) For any $\epsilon > 0$ and $R < C$, there exists a $(M = [2^{nR}], n)$ code for Q such that
	- $\lambda_{\text{max}} < \epsilon$ for all sufficiently large n.

2) Any ([2^{nR}], n) code with $R > C$ has λ_{avg} bounded away from 0 for all n.

For part 1, it uses Joint AEP.

Ideally, we "pack" non-confusable typical y for a given typical x . Joint AEP says independent sampling suffices to achieve this.

For part 2, it utilizes data processing and Fano's inequality.

Continuous-time Gaussian Channel and Bandlimit

Previously, we considered discrete-time channels. (n usage of given channel) Now, consider a continuous-time Gaussian channel.

- an input *signal* $x(t)$
- *additive white Gaussian noise*
- power constraint P (defined in a continuous manner)

Consider a **bandlimited** (continuous-time) Gaussian channel

Channel cuts out all frequencies greater than W (e.g., by applying a bandpass filter)

Nyquist-Shannon's Theorem

Sampling a signal that is bandlimited to W at a sampling rate $\frac{1}{2W}$ is sufficient for the reconstruction.

Discretize input signal. → Send through discrete-time channel for multiple times.

Capacity of Bandlimited Gaussian Channel

Consider a continuous-time Gaussian channel Q with

bandwidth *W* Hz, power *P*, and *power spectral density* of noise $N_0/2$ W/Hz.

By Nyquist-Shannon's theorem, it is equivalent to $2W$ usage (per sec) of a discrete-time Gaussian channel Q' with power constraint $P/2W$, and noise N(0, $N_0/2$) of

Note the capacity of *Q'* is
$$
C' = \frac{1}{2} \log \left(1 + \frac{P}{W N_0} \right)
$$
.

Then the capacity of *is*

$$
C = 2W \cdot C' = W \log \left(1 + \frac{P}{WN_0} \right)
$$

Statistics

Type gives a stronger sense of AEP.

Type

type(x): **type** of a sequence x, i.e., the frequency of each symbol in X typeclass (t) : **type class of type** *t*, i.e., a set of sequence (of length *n*) whose type is *t*

type of *acbdaabcba*

0.0

0.4

Observation.

```
Exponential #sequence of length n (= |X|^n).
```
Polynomial #types of a sequence of length $n \leq (n + 1)^{|\mathcal{X}|}$).

→ ∃ a type whose type class contains *exponentially* many sequences.

In fact, every type class contains

$$
\frac{1}{(n+1)^{|\mathcal{X}|}} 2^{nH(t)} \le |\text{typeclass}(t)| \le 2^{nH(t)} \text{ type class of the above type} \text{aaaabbbcd} \text{aaaabbbcd}
$$

dccbbbaaaa

0.3

0.1

 $\overline{0.2}$

type is a distribution over $\mathcal X$

"AEP" for Type and Universal Compression

Consider a sequence of i.i.d. RVs $X = X_1 X_2 \cdots X_n$ where $X_i \sim p$.

```
Note that type(X) is a random distribution over X.
```

```
Let typical sequence be a sequence x \in \mathcal{X}^n such that D(type(x) || p \rangle \approx 0.
```
"**AEP"** (for type). If n is sufficiently large, $Pr[D(\text{type}(X) \parallel p) \approx 0] \approx 1$.

For almost every sequence, the sample frequencies are close to the true probability.

Corollary (Universal Codes).

Even if p is unknown, we can compress an i.i.d. source with (very close to) $H(p)$ -bit per symbol.

Sanov's Theorem

Consider a sequence of i.i.d. dices $X = X_1 X_2 \cdots X_n$ where $X_i \sim p$.

Q. What is the probability being $\sum_i X_i \geq 4n$?

A1. Central limit theorem, i.e., the distribution of the sample mean \rightarrow a normal distribution.

Poor approximation...

A2. Let T be the set of types of sequence whose sum is at least $4n$, i.e.,

 $\mathcal{T} = \{ \text{type}(\mathbf{x}) \mid \text{sum}(\mathbf{x}) \geq 4n \}.$

Sanov's theorem says

$$
\Pr[\text{type}(X) \in \mathcal{T}] \le |\mathcal{T}| \cdot 2^{-nD(t^* \parallel p)} \le (n+1)^{|\mathcal{X}|} \cdot 2^{-nD(t^* \parallel p)},
$$

where $t^* \in \operatorname{argmin}_{t \in \mathcal{T}} D(t \parallel p)$.

 $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6$

The probability measure of $\mathcal T$ is essentially determined by t^* .

= probability of large deviation

Conditional Limit Theorem

Consider a sequence of i.i.d. dices $X = X_1 X_2 \cdots X_n$ where $X_i \sim p$.

Q. Suppose $\sum_i X_i \ge 4n$. What can we say about the marginal probability distribution?

A. Let T be the set of types of sequence whose sum is at least $4n$, i.e.,

 $\mathcal{T} = \{ \text{type}(\mathbf{x}) \mid \text{sum}(\mathbf{x}) \geq 4n \},\$

and let $t^* \in \argmin_{\mathcal{D}} D(t \parallel p)$ be a "closest" distribution in \mathcal{T} to p . $t \in T$

Conditional limit theorem says, for any $x \in \mathcal{X}$, if τ is a closed convex set.

 $Pr[X_1 = x \mid type(X) \in \mathcal{T}] \rightarrow t^*(x)$.

The probability measure of $\mathcal T$ is not only determined by t^*

but also concentrated near [∗] **i.e., the** *conditional type* **is close to** ∗**.**

Another Proof of Joint AEP

product of marginal distributions of p

Consider a sequence of pairs of i.i.d. RVs $(X, Y) = (X_1 Y_1)(X_2 Y_2) \cdots (X_n Y_n)$ where $(X_i Y_i) \sim p_x p_y$

Recall a jointly typical set $A_{\epsilon}^{(n)} = \{ (x, y) | p_x(x) \approx 2^{-nH(X)}, p_y(y) \approx 2^{-nH(Y)}, p(x, y) \approx 2^{-nH(X,Y)} \}.$

Let $\mathcal T$ be the set of types of typical sequence, i.e., $\mathcal T = \left\{ \mathrm{type} (\mathbf{x}, \mathbf{y}) \mid (\mathbf{x}, \mathbf{y}) \in A_{\epsilon}^{(n)} \right\}.$

By applying Sanov's theorem,

$$
\Pr_{(X,Y)\sim\prod p_x p_y}[\text{type}(X,Y)\in\mathcal{T}]\leq (n+1)^{|\mathcal{X}|}\cdot 2^{-nD(t^*||p_x p_y)},
$$

where $t^* \in \operatornamewithlimits{argmin}\limits_{t \in \mathcal{T}} D(t \parallel p_x p_y)$. t∈J

In fact, $t^* = p$ and thus $\Pr_{(\bm{Y},\bm{V}) \sim \Pi}$ (X,Y) ~ $\prod p_x p_y$ $type(X, Y) \in \mathcal{T} \leq 2^{-n(I(X;Y)+\epsilon)}$ when *n* is sufficiently large. Also, by conditional limit theorem, its conditional type is likely to be close to p . when n is sufficiently large.

Two Hypothesis Testing

Trade-off between $\alpha \coloneqq \Pr[\text{choosed } P_2 \text{ but } P_1 \text{ is true}]$ and $\beta \coloneqq \Pr[\text{choosed } P_1 \text{ but } P_2 \text{ is true}]$. **Neyman-Pearson lemma** says the optimum test is a (log-)likelihood ratio test.

 $P_1(X)$ $\overline{P_2(X)} \geq \tau \iff D(\text{type}(X) \parallel P_2) - D(\text{type}(X) \parallel P_1) \geq 1$ 1 $\frac{1}{n}$ log τ

Let
$$
T
$$
 be the set of types that satisfies the above, i.e., $t \in T$ accepts P_1 and $t \notin T$ accepts P_2 .
Suppose P_1 was the true distribution, i.e., $X \sim \prod P_1$. Sanov's theorem gives

$$
\alpha = \Pr[\text{type}(X) \notin \mathcal{T}] = 2^{-n(D(t_1^* \| P_1) - \epsilon_1)}.
$$

Similarly, if P_2 was the true distribution, we have

$$
\beta = \Pr[\text{type}(X) \in \mathcal{T}] = 2^{-n(D(t_2^* \| P_2) - \epsilon_2)}.
$$

We can also show $t_{1}^{*} = \operatornamewithlimits{argmin}_{t \notin T}$ ∉ $D(t \parallel P_1) = \argmin_{t \in T}$ t∈J $D(t \| P_2) = t_2^*$.

Chernoff-Stein lemma says if $\alpha < \epsilon$ is small, $\beta \approx 2^{-n(D(P_1 \| P_2) - \epsilon)}$ is best possible. by AEP for KL-divergence.

Kolmogorov Complexity

Source coding says $\approx H(X)$ bits are required to describe X.

What is the shortest length of a program that describes (or outputs) X ?

"Approximately equal to its entropy"

Kolmogorov Complexity

Consider any universal Turing machine u .

 $K_u(\mathbf{x}) \coloneqq \min_{p: u(p)=\mathbf{x}} \ell(p)$ is the length of a shortest program that prints x and halts (w.r.t. U).

Consider another Turing machine A and let $p_{\mathcal{A}}$ be a program for A that prints x and halts. Consider a program $s_{\mathcal{A}}$ for $\mathcal U$ that simulates $\mathcal A$ on $\mathcal U$.

Consider an input $s_{A}p_{A}$ to U ; it prints x and halts. Therefore,

 $K_{\mathcal{U}}(\mathbf{x}) \leq K_{\mathcal{A}}(\mathbf{x}) + c_{\mathcal{A}}$

where $c_{\mathcal{A}} \coloneqq \ell(s_{\mathcal{A}})$ is a constant.

 $K(\mathbf{x})$ differs by a constant for any two universal Turing machines.

Kolmogorov Complexity

Consider a Kolmogorov complexity when the length of x is additionally given.

 $K(\mathbf{x} | \ell(\mathbf{x}))$ is the length of a shortest program such that when given $n = \ell(\mathbf{x})$, prints x and halts.

Consider a program p: "print the first n-bit $x_1 x_2 \cdots x_n$ "; its length $\ell(p)$ is $n + c$.

 $K(\mathbf{x} \mid n) \leq n + c$

However, we cannot say $K(\mathbf{x}) \leq n + c$, since if n is unknown, p does not know when to stop.

Consider a program p' : "read the first 2 $\lceil \log n \rceil + 2$ bits and decide n ; print the next n -bit." if $n = 5 = 101_{(2)}$, we can describe *n* as 11001101 with 01 meaning ','

We can upper bound $K(\mathbf{x}) \leq K(\mathbf{x} \mid n) + 2 \log n + c'$.

Kolmogorov Complexity (Information Theory)

Consider a sequence of i.i.d. (binary) RVs $X = X_1 X_2 \cdots X_n$.

Source coding theorem says $\frac{1}{n}$ $\frac{1}{n}\mathbb{E}[K(X \mid n)] \geq H(X)$. A shortest program is a compression of X.

Consider any type t and its type class typeclass (t) . We index each $x \in$ typeclass (t) . Consider a program p: "print *i*-th string **x** of typeclass(*t*)" Recall $|$ typeclass $(t)| \leq 2^{nH(t)}$

To describe a type, $|\mathcal{X}| \log n$ bits suffice. To describe an index, $nH(t)$ bits suffices.

Since the sample frequencies are close to the true probability, we have

$$
\frac{1}{n}\mathbb{E}[K(X \mid n)] \le H(X) + \frac{|\mathcal{X}| \log n}{n} + \frac{c}{n}.
$$

Since $K(\mathbf{x}) \le K(\mathbf{x} \mid n) + 2\log n + c',$
 $H(X) \le \frac{1}{n}\mathbb{E}[K(X)] \le H(X) + \frac{1}{n}(\log |\mathcal{X}| + c')$

* also holds without expectation

Kolmogorov Complexity (Theory of Computation)

There is no program that decides $K(\mathbf{x}) = k$ (for input x, k).

- Suppose t.c. there is such program p .
- Fix large k such that it satisfies $k > \ell(p) + \log k + c$.

(by running p)

- Consider a program q: "iterates until it finds a string y where $K(y) > k$; print y" (e.g., in lexicographical order)
- $\ell(q) = \ell(p) + \log k + c$
- However, $k < K(y) \leq \ell(q) = \ell(p) + \log k + c$, which is a contradiction. "Berry paradox"

Shares the essential spirit with the noncomputability of the Halting problem (Chaitin's number) and Gödel's incompleteness theorem.

Side Notes

Sufficient Statistics

 $\{f_{\theta}(x)\}$: a family of PMFs indexed by θ

X: a sample from a distribution in $\{f_{\theta}(x)\}.$

 $T(X)$: any statistics (such as sample mean or sample variance).

Then $\theta \to X \to T(X)$, and by the data-processing inequality, for any distribution on θ , $I(\theta; X) \geq I(\theta; T(X)).$

If it holds with equality, i.e., $\theta \to T(X) \to X$, no information is lost. We say $T(X)$ is a *sufficient statistics* for θ .

Once we know $T(X)$, the remaining randomness in X does not depend on θ .

Example)

 $X = X_1, X_2, ..., X_{10}$ be an i.i.d. sequence of coin w.p. θ (chosen randomly). Let $T(X) = X_1 + \cdots + X_{10}$ be the #1's.

 $T(X)$ is a sufficient statistics for θ .

 $I(\theta;X) = H(\theta) - H(\theta|X) = H(\theta) - H(\theta|T(X)) = I(\theta;T(X))$

Sufficient Statistics

 $\{f_{\theta}(x)\}$: a family of PMFs indexed by θ

X: a sample from a distribution in $\{f_{\theta}(x)\}.$

 $T(X)$: any statistics (such as sample mean or sample variance).

Then $\theta \to X \to T(X)$, and by the data-processing inequality, for any distribution on θ , $I(\theta; X) \geq I(\theta; T(X)).$

If it holds with equality, i.e., $\theta \to T(X) \to X$, no information is lost. We say $T(X)$ is a *sufficient statistics* for θ .

Once we know $T(X)$, the remaining randomness in X does not depend on θ .

If T is a function of every other sufficient statistic U, i.e., $\theta \to X \to U(X) \to T(X)$, $I(\theta; X) \Big(\geq I(\theta; U(X)) \Big) \geq I(\theta; T(X)).$

If it holds with equality, i.e., $\theta \to T(X) \to U(X) \to X$,

we say $T(X)$ is a *minimal sufficient statistics* for θ .

Fano's Inequality

Theorem. For any estimator \hat{X} s.t. $X \to Y \to \hat{X}$, we have $H(X|Y) \leq H(X|\hat{X}) \leq H(1_{\hat{X} \neq X}) + \Pr[\hat{X} \neq X] \log |X| \leq 1 + \Pr[\hat{X} \neq X] \log |X|.$

Probability of Error and Entropy

Lemma. If X and X' are i.i.d., $Pr[X = X'] \ge 2^{-H(X)}$ with equality iff X has a uniform distribution. **Corollary**. If $X \sim p$ and $X' \sim q$ are independent and $X = X'$,

$$
\Pr[X = X'] \ge 2^{-H(p) - D(p||q)}
$$

$$
\Pr[X = X'] \ge 2^{-H(q) - D(q||p)}
$$

Stochastic Process and Entropy Rate

Stochastic process $\{X_i\}$: an indexed sequence of RVs with arbitrary dependence

Stationary stochastic process: joint distribution of any subset is invariant w.r.t. shifts in index

$$
Pr[(X_1, X_2, ..., X_n) = (x_1, x_2, ..., x_n)] = Pr[(X_{1+\ell}, X_{2+\ell}, ..., X_{n+\ell}) = (x_1, x_2, ..., x_n)]
$$

Entropy rate

Definition 1 (entropy per symbol).

$$
H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots, X_n)
$$
 when the limit exists

Definition 2 (conditional entropy of the last).

$$
H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n \mid X_{n-1}, X_{n-2}, \dots, X_1) \text{ when the limit exists}
$$

Theorem. For a stationary stochastic process, $H(X) = H'(X)$.

General AEP

AEP

For any i.i.d. process, in probability,

$$
-\frac{1}{n}\log p(X_1, \ldots, X_n) \to H(X)
$$

General AEP (chapter 16)

For any stationary *ergodic* process, with probability 1,

$$
-\frac{1}{n}\log p(X_1, \dots, X_n) \to H(\mathcal{X})
$$

Entropy Rate of Stationary Markov Chain

With initial dist. as stationary dist. μ , Markov chain is a stationary process.

$$
H(\mathcal{X}) = H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n \mid X_{n-1}, X_{n-2}, \dots, X_1) = \lim_{n \to \infty} H(X_n \mid X_{n-1}) = H(X_2 \mid X_1)
$$

Markovity
stationarity
stationarity

Entropy Rate of Functions of Markov Chain

Let $\{X_i\}$ be a stationary Markov chain. Consider $\{Y_i\}$ where $Y_i=\phi(X_i)$. $\{Y_i\}$ does not necessarily form a Markov chain. How to know $H(Y_n | Y_{n-1}, Y_{n-2}, ..., Y_1) \approx H(Y)$ for any n ?

$$
H(Y_n \mid Y_{n-1}, Y_{n-2}, \dots, Y_1, X_1) \le H(Y) \le H(Y_n \mid Y_{n-1}, Y_{n-2}, \dots, Y_1)
$$

$$
\lim_{n \to \infty} H(Y_n \mid Y_{n-1}, Y_{n-2}, \dots, Y_1, X_1) = H(Y) = \lim_{n \to \infty} H(Y_n \mid Y_{n-1}, Y_{n-2}, \dots, Y_1)
$$

Relates to a *hidden Markov model* (HMM)

Thank You

Presented by Changyeol Lee