
Data source 𝑋: real-value or discrete random variable 𝑋: Ω → ℝ𝑀 

Def 1. For any distortion 𝑑 , divergence 𝐷 , and a random variable 𝑋 , the (information) rate-

distortion-perception function (RDPF) is defined as 

𝑅(𝜃𝑑, 𝜃𝑝) = 𝑖𝑛𝑓𝑃�̂�∣𝑥
𝐼[𝑋, �̂�] 𝑠. 𝑡. 𝐸[𝑑(𝑋, �̂�)] ≤ 𝜃𝑑 𝑎𝑛𝑑 𝐷[𝑃𝑥 , 𝑃𝑥] ≤ 𝜃𝐷 

It can be generalized for an arbitrary set of constraints on 𝑃𝑋,�̂�. 

 

Def 2. For a source 𝑋~𝑃𝑋 and a set of real valued functions 𝐷𝑖 of joint distributions 𝑃𝑋,�̂� , the rate 

functions (𝐼𝑅𝐹)𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 

𝑅(𝜃) = 𝑖𝑛𝑓𝑃�̂�|𝑋
𝐼[𝑋, �̂�] 𝑠. 𝑡. ∀𝑖: 𝐷𝑖[𝑃𝑋,�̂�] ≤ 𝜃𝑖 

The RDPF is a special case of IRF where we choose 

𝐷1[𝑃𝑋,�̂�] = 𝐸[𝑑(𝑋, �̂�)] 𝑎𝑛𝑑 𝐷2[𝑃𝑋,�̂�] = 𝐷[𝑃𝑋, 𝑃�̂�] 

 

Given a polish metric space 𝒳, a Borel measurable space (𝒳, ℬ(𝒳)) is induced by the metric 

𝑋: a random variable with distribution 𝑝𝑋 ∈ 𝑃(𝒳) 

Δ: 𝒳 × 𝒳 → [0, ∞) a measurable distortion function Δ(𝑥, �̂�) = 0 𝑖𝑓𝑓 𝑥 = �̂� 

𝑑: 𝑃(𝒳) × 𝑃(𝒳) → [0, ∞) a divergence with 𝑑(𝑝𝑥, 𝑝𝑥) = 0 𝑖𝑓𝑓 𝑝𝑥 = 𝑝𝑥 

 

𝑅(𝐷, 𝑃) ≔ inf
𝑃�̂�|𝑋

𝐼(𝑋: �̂�)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐸[Δ(𝑋, �̂�)] ≤ 𝐷, 𝑑(𝑃𝑋, 𝑃�̂�) ≤ 𝑃 

Let 𝑆 be uniformly distributed over the unit circle 𝑆 ≔ {𝑆 ∈ ℝ2: ‖𝑠‖2 = 1}. ‖⋅‖𝑝 is the 𝑝-norm 

The question? 

Minimize the expected distortion 𝐸[‖𝑠 − �̂�‖2
2] if 𝑆 is encoded using 1 bit where �̂� is required to 

meet the perfect perceptual quality (�̂� is also uniform distribution) 

  



e.g. 

𝐾 ≔ {
0,

𝜃(𝑆)

𝜋
+ 𝑊 ∈ [0,1) ∪ [2,3),

1,
𝜃(𝑆)

𝜋
+ 𝑊 ∈ [1,2)

  

�̂� ≔ (cos((𝐾 + 𝑊)𝜋) , sin((𝐾 + 𝑊)𝜋))  

Where 𝑊 is uniform distribution over [0,1) and independent to 𝑆. 

𝐸[‖𝑠 − �̂�‖2] = 2 −
8

𝜋2
 

This is the minimum achievable with private randomness only. 

If not private randomness (a.k.a. common randomness), then 

𝐾 ≔ {
0,

𝜃(𝑆)

𝜋
+ 𝑊 ∈ [0,1) ∪ [2,3),

1,
𝜃(𝑆)

𝜋
+ 𝑊 ∈ [1,2)

  

�̂� ≔ (cos((𝐾 − 𝑊)𝜋) , sin((𝐾 − 𝑊)𝜋))  

Then 

𝐸[‖𝑠 − �̂�‖2] = 2 −
4

𝜋
 

 

Classical Rate-Distortion Theory 

Trade off between compression rate and quality loss. 

Rate distortion function 𝑅(𝐷) minimum rate to encode data with an expected distortion 𝐷. 

𝐷: distortion constraint 

𝑃: perception constraint 

𝑅 is achievable with common randomness if (𝑏𝑖𝑔 𝑛) there exist shared on a polish space 𝑄, 

with seed distribution 𝑃𝑄 , encoding distribution 𝑃𝑍∣𝑋𝑛𝑄 , decoding distribution 𝑃�̂�𝑛∣𝑍𝑄 with �̂� = 𝑋, 

such that the joint distribution 

𝑃𝑋𝑛𝑄𝑍�̂�𝑛 ≔ 𝑃𝑋
𝑛𝑃𝑄𝑃𝑍∣𝑋𝑛𝑃�̂�𝑛∣𝑍𝑄 

Satisfies 

1

𝑛
𝐻( 𝑍 ∣∣ 𝑄 ) ≤ 𝑅 



1

𝑛
∑ 𝐸[Δ(𝑋𝑡 , �̂�𝑡)] ≤ 𝐷

𝑛

𝑡=1

 

𝑑(𝑃𝑋, 𝑃�̂�𝑡
) ≤ 𝑝, 𝑡 ∈ [1: 𝑛] 

 

The infimum of R is denoted by 𝑅𝑐𝑟(𝐷, 𝑃). 

When the encoder and decoder does not share the (random) seed, 𝑅𝑝𝑟(𝐷, 𝑃). 

If the encoder and decoder is deterministic, 𝑅𝑛𝑟(𝐷, 𝑃) 

 

※Perceptual Quality (Realism) 

Measured in terms of divergence between source and target. 

Distortion is measured using semimetrics. 

 

Remark 1. 
1

𝑛
𝐻(𝑍, 𝑄) ≤ 𝑅 ⟺

1

𝑛
log|𝑍| ≤ 𝑅 (𝑍 is alphabet size) 

𝑍 can be represented by a variable length code of 𝐻( 𝑍 ∣∣ 𝑄 = 𝑞 ) + 1 

Normalize by 𝑛 and take the expectation with 𝑄 gives us 

1

𝑛
𝐻( 𝑍 ∣∣ 𝑄 ) +

1

𝑛
 with 𝑛 → ∞ 

1

𝑛
𝐻( 𝑍 ∣∣ 𝑄 ) 

 

Remark 2. By definition, 

𝑅𝑐𝑟(𝐷, 𝑃) ≤ 𝑅𝑝𝑟(𝐷, 𝑃) ≤ 𝑅𝑛𝑟(𝐷, 𝑃) 

 

Assumption 1. 𝑑(⋅,⋅) is convex in its second argument. (taking this assumption from now on) 

Them 1. 𝑅𝑐𝑟(𝐷, 𝑃) = 𝑅(𝐷, 𝑃) for 𝐷 ≥ 0, 𝑃 ≥ 0. 

Remark 3. If 

1

𝑛
∑ 𝑑(𝑃𝑋, 𝑃�̂�)

𝑛

𝑡=1

≤ 𝑃 𝑜𝑟 𝑑 (𝑃𝑋,
1

𝑛
∑ 𝑃�̂�

𝑛

𝑡=1

) ≤ 𝑃 

Then Them 1. Holds. 

 



Assumption 2. For any 𝐷 > 0 and 𝑃 > 0 we have 𝑅(𝐷, 𝑃) < ∞. 

There exists a discrete random variable 𝒳 satisfying �̃� ⊆ 𝒳 and |𝒳| < ∞ such that 

𝐼(𝑋: �̃�) ≤ 𝑅(𝐷, 𝑃) + 𝜖  

𝐸[Δ(𝑋, �̃�)] ≤ 𝐷 + 𝜖  

𝐸 [max
𝑥∈𝒳

Δ(𝑥, �̃�)] < ∞  

𝑑(𝑃𝑋, 𝑃𝒳) ≤ 𝑃 + 𝜖  

𝑑(𝑃𝑋, 𝛾) < ∞ for all distribution of possible 𝒳. 

 

With assumptions 1,2 

Them 2. 𝑅𝑛𝑟(𝐷, 𝑃) = 𝑅(𝐷, 𝑃) 

With asymptotic setting it is possible to leverage the aggregated randomness to simultaneously 

shape the marginal distributions of all output symbols into the desired form via proper deterministic 

encoding and decoding 

 

Them 3. For 𝑃 ≥ 0, 

𝑅𝑐𝑟(0, 𝑃) = 𝑅𝑝𝑟(0, 𝑃) = 𝑅𝑛𝑟(0, 𝑃) = 𝑅(0, 𝑃) 

Where 

𝑅(0, 𝑃) = {𝐻(𝑋), 𝑃𝑋 is a discrete distribution
∞

 

 

Assumption 3. For any 𝐷 > 0 and 𝜖 > 0 there exists a discrete random variable 𝒳 and an arbitrary 

random variable �̂�~𝒳 such that 𝑋 ⟷ �̃� ⟷ �̂� form a Markov chain. 

The support of �̃� satisfies |𝒳| < ∞ and 

𝐼(𝑋; �̃�) ≤ 𝑅(𝐷, 0) + 𝜖  

𝐸[Δ(𝑋, �̃�) ≤ 𝐷  

𝑃�̂� = 𝑃𝑋  

In short, assumption 3 basically postulates the existence of a discrete random variable �̃� sitting 

between 𝑋 and �̃� with 𝐼(𝑋; �̃�) ≈ 𝐼(𝑋, �̂�) 

Them 4. With assumption 1,3 𝑅𝑝𝑟(𝐷, 0) = 𝑅(𝐷, 0) for 𝐷 > 0. 


