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Introduction

Today’s Topic

Problem (Klee’s measure problem)

Given a set B = {by, by, ..., b,} of n d-dimensional boxes, find the
volume of the union of all boxes in B.

Definition (Hyperrectangle a.k.a. Box)
A hyperrectangle is a Cartesian product of finite intervals.
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Introduction

What we will discuss

» Two space partitioning approaches toward Klee’s measure
problem.
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The first steps: 1-dim. case
Klee, 1977
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Introduction

The first steps: 1-dim. case
Klee, 1977

This trivial algorithm
1. utilizes sweeping
2. uses no special data structures
3. runsin

> O(nlogn)-time' (O(n) w/ sorted input)
> O(n)-space (O(1) w/ sorted input)

"Actually O(nlog p), where p is the minimum number of lines stabbing all
intervals
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The first steps: 2-dim. case
Bentley, 1977
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The first steps: 2-dim. case
Bentley, 1977

Try sweeping!
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The first steps: 2-dim. case
Bentley, 1977

=<+ dx

The volume differential is dx - (measure of the cross section)
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The first steps: 2-dim. case
Bentley, 1977

Measure intervals and compute the volume of the slab
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Introduction

The first steps: 2-dim. case
Bentley, 1977

This algorithm?
1. uses sweeping
2. uses segment tree maintaining partial measure of
corresponding intervals
3. runsin

> O(nlogn)-time (at most 2n updates on segment tree)
> ®(n)-space

2The article is unpublished. Referred to Leeuwen and Wood, 1981 instead.
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Introduction

Beyond 3-dimension

> Bentley’s algorithm easily extends to d-dimensional boxes,
where d > 2 is arbitrary integer

» Shows O(n%~!log n) running time.

» Unfortunately, the known (non-tight) lower bound is Q(n log n)
regardless of the dimensionality.

» How can we design improved algorithms?
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Space partitioning

> Partitioning a given (euclidean) space.

Figure: Penrose tiling
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Space partitioning

Data structures

> k-dtree

» Quadtree/Octree

> BinarySpace Partitioning tree
» and many others...
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Space partitioning

Which one is effective?

> Problem-by-problem.

> Key is how to partition the space.
Note: the sweeping algorithms effectively partition the space
into slabs in which some “characteristics” are preserved.

> We will see two approaches for the Klee’s measure problem.
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Space partitioning

Approach 1

Overmars and Yap, 1991

Key ideas

The linear increase (O(n?~' log n)) w.r.t. dimensionality is due to
the recursive structure of the computation.

Suppose we sweep the whole space along the last (x;) axis. Can
we maintain the (d — 1)-dim. cross section in a single data
structure?
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Space partitioning

Idea
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Space partitioning

Idea
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The volume is [] L; — [1(L; — M;) and computing L;’'s and M;’s are
simple problems.

Divide the space into this trellis pattern!
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Space partitioning

Data structure

Orthogonal partition tree

> A balanced binary tree.

> A node a has an associated region C,.; Cioot is the whole
space.

» For any two children a; and a; of a node «, {Cy,, Cy,} is @
partition of C,,.
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Space partitioning

Data structure

Orthogonal partition tree for Klee’s measure problem

> M, is the total measure under the subtree rooted at a.

> T, is the number of boxes covering whole C,, but not Cp,ureni(a)-
> If T, > 0 (C, is fully covered), M, = V(C,)
> Else My, = Migs(o) + Mrighi(a)

> A leaf A maintains a set B, of boxes that intersect with the
interior of C; but do not cover Cpureni(r)-
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Space partitioning

Terms

Definition (i-boundary)

For a d-box, its i-boundaries are its (d — 1)-dim. faces perpendicular
to x;-axis. Note that a d-box has two i-boundaries forall 1 <i < d.

Example

X3

X2
X1

The red face [0, 1] x {0} x [0, 1] is a 2-boundary of the unit cube.

Klee's measure problem Yonsei CS Theory Autumn '24 19/35



Overview Introduction Space partitioning Summary

Partition strategy

3-dim. case; 2-dim. projection
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Space partitioning

Partition strategy

3-dim. case; 2-dim. projection

1. Split x;-axis into 2 v/n intervals such that each contains at
most +/n 1-boundaries.
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Partition strategy

3-dim. case; 2-dim. projection
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2. For each 1-boundaries contained in a slab, split the slab along
its 2-boundaries
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Space partitioning

Characteristics

For 2-dimension case,

1. The space is divided into O(n) cells.
: 2 y/n slabs split into 4 v/n cells.

2. Each box of B partially covers at most O( /n) cells.
: Each vertical line(1-boundary) cut through 4 +/n cells and
horizontal line cut through 2 v/n slabs.

3. No cell contains vertices in its interior.
: The vertices are in some horizontal boundaries.
: The boxes are in trellis pattern

4. Each cell has at most O(+/n) boxes partially covering it.
: A cell contains at most /n 1-boundaries and a slab contains
at most +/n 2-boundaries.
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Data structure

Orthogonal partition tree

N \Y) S3 Sy

Klee's measure problem

Space partitioning

Ts
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Space partitioning

Characteristics

Orthogonal partition tree

For 2-dimension case,

1.

o &~ N

The tree has O(n) leaves.

Each box stored in at most O(+/n) leaves.
No C,’s contain vertices in its interior.
Each leaf stores at most O( 4/n) boxes.

Each box influences at most O(+/nlogn) T,’s.
: from 1 and 2.
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Space partitioning

Analysis

3-dim. case

Box insertion > A box is stored in at most O( v/n) leaves
(O(/nlogn))
> M, is computed from two segment trees for
each axis. (O(+/nlogn))
> M, and T, is updated for all nodes a between
the leaves A and the root (O(+/nlog n) updates)
Box deletion Similar to inserting analysis

Measure query Moot is the answer. O(1).

Theorem
The algorithm runs in O(n +/nlog n)-time.
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Space partitioning

Extend to higher dimension

Partition strategy

1. Split x;-axis into 2 v/n intervals such that each contains at
most vn 1-boundaries.

2. For each boxes whose 1-boundaries contained in a 1-slab,
split the slab along its 2-boundaries

3. For all others, split the 1-slab along the +/n-th 2-boundaries.
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Space partitioning

Extend to higher dimension

Partition strategy

1. Split x;-axis into 2 v/n intervals such that each contains at
most vn 1-boundaries.

2. For each boxes whose 1-boundaries contained in a 1-slab,
split the slab along its 2-boundaries

3. For all others, split the 1-slab along the +/n-th 2-boundaries.

4. For each boxes whose 1- and 2- boundaries in a 2-slab, split
the slab along the 3-boundaries.

5. For all others, split the 2-slab along the +/n-th 3-boundaries.

6. (repeat)
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Space partitioning

Summary
Overmars and Yap, 1991

For d-dim. Klee’s measure problem, this algorithm
1. runs in O(n?/? log n)-time with the partition tree.

2. uses O(n¥/?) space
: This can be reduced to O(n) (only segment trees) by
interleaving the measuring step with the partitioning.
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Space partitioning

Approach 2

Chen, 2013

Key ideas
The logarithmic factor (O(n?/? log n)) comes from maintaining the

tree while sweeping.
Can we design a different partitioning method that is free from
maintaining a tree?
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Modified problem

Problem (Modified version of the problem)

For a set of d-boxes B and an open box ', find the complement
volume of union of B within the domainT .

Example
S r
3
1
1 4 8
ACD) =2
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Space partitioning

Algorithm

1: function Measure(B, I)
Given: C is a fixed, small constant
if |B] < C then return the answer directly.
Simplify B
Cut T into two disjoint boxes I'; and I'r
return Measure({b N T'p | b € B}, I'})

+ Measure({b NT'g | b € B}, I'g)

6: end function
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Space partitioning

Simplification

> Remove all slabs (a box of {x | a < x; < b} forminT) and
adjust Band .

» This costs linear time per axis.

> Note that the complement volume is preserved and all
remaining boxes have a (d — 2)-face intersecting with I'.
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Space partitioning

Partitioning

2-dim. case

> Split I' into two open boxes at the median of x;-coord of all
(d — 2)-faces

> Swap axis number
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Space partitioning

Partitioning

3+-dim. case

> Assign a weight 20+)/4 on all (d — 2)-faces perpendicular to x;
and x;-axes.

> The weight is bounded in [1, 4].

X3

1+2)/3
20277

L 2{1+3)/3
g =

-
|

-
-

.x1

Figure: 1-faces of 3-d boxes intersecting the open domain
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Space partitioning

Partitioning

3+-dim. case

> Find a weighted median m among the intersection of the
(d - 2) faces and the x;-axis, and cut I" through the
hyperplane x; = m.

142)/3
B aa Zé)ﬁ )/__ =

“ a3y
g

-
|

-
-

- X1

Figure: 1-faces of 3-d boxes intersecting the open domain
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Space partitioning

Partitioning

3+-dim. case

» Shift axis indices (1 > d > (d-1)—> -+ >3 -2 - 1).

> Effectively a k-d tree.

X2

.x3

Figure: 1-faces of 3-d boxes intersecting the open domain
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Space partitioning

Partitioning

Weight decrease

> After cutting, (d — 2)-faces not perpendicular to x;-axis
(i,j # 1) will have weight 20-1+/-1/4 decreased by 2%/¢.

> (d — 2)-faces perpendicular to x; axis (j # 1) will have weight
2W@+i=D/d “increased by 2(4~2/4_Note that these faces are split
into smaller domains by half, reducing the total weight by half.
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Space partitioning

Analysis

Simplifying ~ » O(n) for each axis to identify a slab
> O(n) for each axis to adjust box boundaries
Cut  » Finding (weighted) median is O(n) after sorting
» The total weight is decreased by 2%/¢ for each
cutting step.

Theorem
The algorithm runs in O(n®'?)-time.
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Summary

Algorithm Summary

Dim. | Time complexity

1 O(nlogn)®

2 ®(nlogn)

3+ | Q(nlogn)-0(n'?)

30(nlog p) where p is min. #lines stabbing all intervals.
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