Klee's measure problem

Hyunjoon Cheon

Oct. 17, 2024

Overview

Introduction

Space partitioning

Summary

Find the colored area

A = ?

Find the colored area

A = 25

Find the colored area

A = 25 = 2 + 15 + 8

Find the colored area

A = 25 = 2 + 6 + 6 + 3 + 8

Find the colored area

A = 25 = 16 + 15 - 6

Find the colored area

A = 25 = 40 - 15

Today's Topic

Problem (Klee's measure problem)

Given a set $B = \{b_1, b_2, ..., b_n\}$ of *n d*-dimensional boxes, find the volume of the union of all boxes in *B*.

Definition (Hyperrectangle a.k.a. Box)

A hyperrectangle is a Cartesian product of finite intervals.

What we will discuss

Two space partitioning approaches toward Klee's measure problem.

The first steps: 1-dim. case Klee, 1977

The first steps: 1-dim. case Klee, 1977

This trivial algorithm

- 1. utilizes sweeping
- 2. uses no special data structures
- 3. runs in
 - $O(n \log n)$ -time¹ (O(n) w/ sorted input)
 - $\Theta(n)$ -space (O(1) w/ sorted input)

¹Actually $O(n \log p)$, where p is the minimum number of lines stabbing all intervals

Bentley, 1977

Bentley, 1977

Try sweeping!

Bentley, 1977

The volume differential is $dx \cdot$ (measure of the cross section)

Bentley, 1977

Measure intervals and compute the volume of the slab

Bentley, 1977

This algorithm²

- 1. uses sweeping
- uses segment tree maintaining partial measure of corresponding intervals
- 3. runs in
 - O(n log n)-time (at most 2n updates on segment tree)
 - Θ(n)-space

²The article is unpublished. Referred to Leeuwen and Wood, 1981 instead.

Beyond 3-dimension

- Bentley's algorithm easily extends to *d*-dimensional boxes, where *d* ≥ 2 is arbitrary integer
- Shows $O(n^{d-1} \log n)$ running time.
- Unfortunately, the known (non-tight) lower bound is $\Omega(n \log n)$ regardless of the dimensionality.
- How can we design improved algorithms?

Space partitioning

Partitioning a given (euclidean) space.

Figure: Penrose tiling

- k-d tree
- Quadtree/Octree
- BinarySpacePartitioning tree
- and many others...

Data structures

k-d tree
Quadtree/Octree
BSP tree
and many others...

Which one is effective?

- Problem-by-problem.
- Key is how to partition the space. Note: the sweeping algorithms effectively partition the space into slabs in which some "characteristics" are preserved.
- We will see two approaches for the Klee's measure problem.

Approach 1 Overmars and Yap, 1991

Key ideas

The linear increase $(O(n^{d-1} \log n))$ w.r.t. dimensionality is due to the recursive structure of the computation. Suppose we sweep the whole space along the last (x_d) axis. Can we maintain the (d-1)-dim. cross section in a single data structure?

Figure: Trellis (취병)

Idea

The volume is $\prod L_i - \prod (L_i - M_i)$ and computing L_i 's and M_i 's are simple problems.

Divide the space into this trellis pattern!

Data structure

Orthogonal partition tree

- A balanced binary tree.
- A node α has an associated region C_α.; C_{root} is the whole space.
- For any two children α₁ and α₂ of a node α, {C_{α1}, C_{α2}} is a partition of C_α.

Data structure

Orthogonal partition tree for Klee's measure problem

- M_{α} is the total measure under the subtree rooted at α .
- ► T_{α} is the number of boxes covering whole C_{α} but not $C_{parent(\alpha)}$.
 - If $T_{\alpha} > 0$ (C_{α} is fully covered), $M_{\alpha} = V(C_{\alpha})$

Else
$$M_{\alpha} = M_{left(\alpha)} + M_{right(\alpha)}$$

A leaf λ maintains a set B_{λ} of boxes that intersect with the interior of C_{λ} but do not cover $C_{parent(\lambda)}$.

Terms

Definition (*i*-boundary)

For a *d*-box, its *i*-boundaries are its (d-1)-dim. faces perpendicular to x_i -axis. Note that a *d*-box has two *i*-boundaries for all $1 \le i \le d$.

Example

The red face $[0, 1] \times \{0\} \times [0, 1]$ is a 2-boundary of the unit cube.

- 1. Split x_1 -axis into $2\sqrt{n}$ intervals such that each contains at most \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the \sqrt{n} -th 2-boundaries.

- 1. Split x_1 -axis into $2\sqrt{n}$ intervals such that each contains at most \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the \sqrt{n} -th 2-boundaries.

- 1. Split x_1 -axis into $2\sqrt{n}$ intervals such that each contains at most \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the \sqrt{n} -th 2-boundaries.

- 1. Split x_1 -axis into $2\sqrt{n}$ intervals such that each contains at most \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the \sqrt{n} -th 2-boundaries.

- 1. Split x_1 -axis into $2\sqrt{n}$ intervals such that each contains at most \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the \sqrt{n} -th 2-boundaries.

- 1. Split x_1 -axis into $2\sqrt{n}$ intervals such that each contains at most \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the \sqrt{n} -th 2-boundaries.

Characteristics

For 2-dimension case,

- 1. The space is divided into O(n) cells.
 - : $2\sqrt{n}$ slabs split into $4\sqrt{n}$ cells.
- 2. Each box of *B* partially covers at most $O(\sqrt{n})$ cells.
 - : Each vertical line(1-boundary) cut through $4\sqrt{n}$ cells and horizontal line cut through $2\sqrt{n}$ slabs.
- 3. No cell contains vertices in its interior.
 - : The vertices are in some horizontal boundaries.
 - : The boxes are in trellis pattern
- 4. Each cell has at most O(√n) boxes partially covering it.
 : A cell contains at most √n 1-boundaries and a slab contains

at most \sqrt{n} 2-boundaries.

Data structure

Orthogonal partition tree

Characteristics

Orthogonal partition tree

For 2-dimension case,

- 1. The tree has O(n) leaves.
- 2. Each box stored in at most $O(\sqrt{n})$ leaves.
- 3. No C_{λ} 's contain vertices in its interior.
- 4. Each leaf stores at most $O(\sqrt{n})$ boxes.
- 5. Each box influences at most $O(\sqrt{n} \log n) T_{\alpha}$'s. : from 1 and 2.

Analysis

3-dim. case

- Box insertion A box is stored in at most $O(\sqrt{n})$ leaves $(O(\sqrt{n} \log n))$
 - ► M_λ is computed from two segment trees for each axis. (O(√n log n))
 - M_α and T_α is updated for all nodes α between the leaves λ and the root (O(√n log n) updates)

Box deletion Similar to inserting analysis

Measure query M_{root} is the answer. O(1).

Theorem

The algorithm runs in $O(n \sqrt{n} \log n)$ -time.

Extend to higher dimension

Partition strategy

- 1. Split x_1 -axis into $2\sqrt{n}$ intervals such that each contains at most \sqrt{n} 1-boundaries.
- 2. For each boxes whose 1-boundaries contained in a 1-slab, split the slab along its 2-boundaries
- 3. For all others, split the 1-slab along the \sqrt{n} -th 2-boundaries.
- 4. For each boxes whose 1- and 2- boundaries in a 2-slab, split the slab along the 3-boundaries.
- 5. For all others, split the 2-slab along the \sqrt{n} -th 3-boundaries.

6. (repeat)

Extend to higher dimension

Partition strategy

- 1. Split x_1 -axis into $2\sqrt{n}$ intervals such that each contains at most \sqrt{n} 1-boundaries.
- 2. For each boxes whose 1-boundaries contained in a 1-slab, split the slab along its 2-boundaries
- 3. For all others, split the 1-slab along the \sqrt{n} -th 2-boundaries.
- 4. For each boxes whose 1- and 2- boundaries in a 2-slab, split the slab along the 3-boundaries.
- 5. For all others, split the 2-slab along the \sqrt{n} -th 3-boundaries.

6. (repeat)

Extend to higher dimension

Partition strategy

- 1. Split x_1 -axis into $2\sqrt{n}$ intervals such that each contains at most \sqrt{n} 1-boundaries.
- 2. For each boxes whose 1-boundaries contained in a 1-slab, split the slab along its 2-boundaries
- 3. For all others, split the 1-slab along the \sqrt{n} -th 2-boundaries.
- 4. For each boxes whose 1- and 2- boundaries in a 2-slab, split the slab along the 3-boundaries.
- 5. For all others, split the 2-slab along the \sqrt{n} -th 3-boundaries.

6. (repeat)

For *d*-dim. Klee's measure problem, this algorithm

- 1. runs in $O(n^{d/2} \log n)$ -time with the partition tree.
- **2.** uses $O(n^{d/2})$ space

: This can be reduced to O(n) (only segment trees) by interleaving the measuring step with the partitioning.

Approach 2 Chen, 2013

Key ideas

The logarithmic factor $(O(n^{d/2} \log n))$ comes from maintaining the tree while sweeping. Can we design a different partitioning method that is free from maintaining a tree?

Modified problem

Problem (Modified version of the problem)

For a set of *d*-boxes *B* and an open box Γ , find the complement volume of union of *B* within the domain Γ .

Example

 $A^C(\Gamma)=2$

Algorithm

- 1: function Measure(B, Γ)
- **Given:** *C* is a fixed, small constant
 - 2: **if** |B| < C **then return** the answer directly.
 - 3: Simplify B
 - 4: Cut Γ into two disjoint boxes Γ_L and Γ_R
 - 5: **return** Measure($\{b \cap \Gamma_L \mid b \in B\}, \Gamma_L$)
 - + Measure($\{b \cap \Gamma_R \mid b \in B\}, \Gamma_R$)
 - 6: end function

Simplification

- Remove all slabs (a box of {x | a ≤ x_i ≤ b} form in Γ) and adjust B and Γ.
- This costs linear time per axis.
- Note that the complement volume is preserved and all remaining boxes have a (d – 2)-face intersecting with Γ.

2-dim. case

- Split Γ into two open boxes at the median of x₁-coord of all (d 2)-faces
- Swap axis number

3+-dim. case

► Assign a weight 2^{(i+j)/d} on all (d - 2)-faces perpendicular to x_i and x_j-axes.

The weight is bounded in [1,4].

Figure: 1-faces of 3-d boxes intersecting the open domain

3+-dim. case

Find a weighted median *m* among the intersection of the (d-2) faces and the x_1 -axis, and cut Γ through the hyperplane $x_1 = m$.

Figure: 1-faces of 3-d boxes intersecting the open domain

3+-dim. case

- Shift axis indices $(1 \rightarrow d \rightarrow (d-1) \rightarrow \cdots \rightarrow 3 \rightarrow 2 \rightarrow 1)$.
- Effectively a *k*-d tree.

Figure: 1-faces of 3-d boxes intersecting the open domain

Partitioning Weight decrease

- After cutting, (d − 2)-faces not perpendicular to x₁-axis (i, j ≠ 1) will have weight 2^{(i−1+j−1)/d}, decreased by 2^{2/d}.
- (d-2)-faces perpendicular to x_1 axis $(j \neq 1)$ will have weight $2^{(d+j-1)/d}$, increased by $2^{(d-2)/d}$. Note that these faces are split into smaller domains by half, reducing the total weight by half.

Analysis

Simplifying \triangleright O(n) for each axis to identify a slab

- O(n) for each axis to adjust box boundaries
- Cut Finding (weighted) median is O(n) after sorting
 - The total weight is decreased by 2^{2/d} for each cutting step.

Theorem

The algorithm runs in $O(n^{d/2})$ -time.

Algorithm Summary

Dim.	Time complexity
1	$\Theta(n\log n)^3$
2	$\Theta(n \log n)$
3+	$\Omega(n \log n) - O(n^{d/2})$

 $^{{}^{3}}O(n \log p)$ where *p* is min. #lines stabbing all intervals.