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Back to the basics
Find the colored area
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Back to the basics
Find the colored area
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Back to the basics
Find the colored area
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Back to the basics
Find the colored area
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Today’s Topic

Problem (Klee’s measure problem)
Given a set B = {b1, b2, . . . , bn} of n d-dimensional boxes, find the
volume of the union of all boxes in B.

Definition (Hyperrectangle a.k.a. Box)
A hyperrectangle is a Cartesian product of finite intervals.
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What we will discuss

▶ Two space partitioning approaches toward Klee’s measure
problem.
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The first steps: 1-dim. case
Klee, 1977
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The first steps: 1-dim. case
Klee, 1977

This trivial algorithm

1. utilizes sweeping

2. uses no special data structures
3. runs in

▶ O(n log n)-time1 (O(n) w/ sorted input)
▶ Θ(n)-space (O(1) w/ sorted input)

1Actually O(n log p), where p is the minimum number of lines stabbing all
intervals
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The first steps: 2-dim. case
Bentley, 1977

Klee’s measure problem Yonsei CS Theory Autumn ’24 8 / 35



Overview Introduction Space partitioning Summary

The first steps: 2-dim. case
Bentley, 1977

Try sweeping!
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The first steps: 2-dim. case
Bentley, 1977

dx

The volume differential is dx · (measure of the cross section)
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The first steps: 2-dim. case
Bentley, 1977

Measure intervals and compute the volume of the slab
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The first steps: 2-dim. case
Bentley, 1977

This algorithm2

1. uses sweeping

2. uses segment tree maintaining partial measure of
corresponding intervals

3. runs in
▶ O(n log n)-time (at most 2n updates on segment tree)
▶ Θ(n)-space

2The article is unpublished. Referred to Leeuwen and Wood, 1981 instead.

Klee’s measure problem Yonsei CS Theory Autumn ’24 9 / 35



Overview Introduction Space partitioning Summary

Beyond 3-dimension

▶ Bentley’s algorithm easily extends to d-dimensional boxes,
where d ≥ 2 is arbitrary integer

▶ Shows O(nd−1 log n) running time.

▶ Unfortunately, the known (non-tight) lower bound is Ω(n log n)
regardless of the dimensionality.

▶ How can we design improved algorithms?
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Space partitioning

▶ Partitioning a given (euclidean) space.

Figure: Penrose tiling
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Data structures

▶ k-d tree
▶ Quadtree/Octree
▶ BinarySpacePartitioning tree
▶ and many others...
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Which one is effective?

▶ Problem-by-problem.
▶ Key is how to partition the space.

Note: the sweeping algorithms effectively partition the space
into slabs in which some “characteristics” are preserved.

▶ We will see two approaches for the Klee’s measure problem.
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Approach 1
Overmars and Yap, 1991

Key ideas
The linear increase (O(nd−1 log n)) w.r.t. dimensionality is due to
the recursive structure of the computation.
Suppose we sweep the whole space along the last (xd) axis. Can
we maintain the (d − 1)-dim. cross section in a single data
structure?
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Idea

Figure: Trellis (취병)
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Idea

M2

L2

The volume is
∏

Li −
∏

(Li −Mi) and computing Li’s and Mi’s are
simple problems.

Divide the space into this trellis pattern!
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Data structure
Orthogonal partition tree

▶ A balanced binary tree.
▶ A node α has an associated region Cα.; Croot is the whole

space.
▶ For any two children α1 and α2 of a node α, {Cα1 ,Cα2} is a

partition of Cα.
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Data structure
Orthogonal partition tree for Klee’s measure problem

▶ Mα is the total measure under the subtree rooted at α.
▶ Tα is the number of boxes covering whole Cα but not Cparent(α).

▶ If Tα > 0 (Cα is fully covered), Mα = V(Cα)
▶ Else Mα = Mleft(α) +Mright(α)

▶ A leaf λ maintains a set Bλ of boxes that intersect with the
interior of Cλ but do not cover Cparent(λ).
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Terms

Definition (i-boundary)
For a d-box, its i-boundaries are its (d−1)-dim. faces perpendicular
to xi-axis. Note that a d-box has two i-boundaries for all 1 ≤ i ≤ d.

Example

x1

x2
x3

The red face [0, 1] × {0} × [0, 1] is a 2-boundary of the unit cube.
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Partition strategy
3-dim. case; 2-dim. projection

1. Split x1-axis into 2
√

n intervals such that each contains at
most

√
n 1-boundaries.

2. For each 1-boundaries contained in a slab, split the slab along
its 2-boundaries

3. For all other 2-boundaries, split along the
√

n-th 2-boundaries.
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Characteristics

For 2-dimension case,

1. The space is divided into O(n) cells.
: 2
√

n slabs split into 4
√

n cells.

2. Each box of B partially covers at most O(
√

n) cells.
: Each vertical line(1-boundary) cut through 4

√
n cells and

horizontal line cut through 2
√

n slabs.

3. No cell contains vertices in its interior.
: The vertices are in some horizontal boundaries.
: The boxes are in trellis pattern

4. Each cell has at most O(
√

n) boxes partially covering it.
: A cell contains at most

√
n 1-boundaries and a slab contains

at most
√

n 2-boundaries.
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Data structure
Orthogonal partition tree

S1 S2 S3 S4

TS

TS1 TS2 TS3 TS4
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Characteristics
Orthogonal partition tree

For 2-dimension case,

1. The tree has O(n) leaves.

2. Each box stored in at most O(
√

n) leaves.

3. No Cλ’s contain vertices in its interior.

4. Each leaf stores at most O(
√

n) boxes.

5. Each box influences at most O(
√

n log n) Tα’s.
: from 1 and 2.
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Analysis
3-dim. case

Box insertion ▶ A box is stored in at most O(
√

n) leaves
(O(
√

n log n))
▶ Mλ is computed from two segment trees for

each axis. (O(
√

n log n))
▶ Mα and Tα is updated for all nodes α between

the leaves λ and the root (O(
√

n log n) updates)

Box deletion Similar to inserting analysis

Measure query Mroot is the answer. O(1).

Theorem
The algorithm runs in O(n

√
n log n)-time.
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Extend to higher dimension
Partition strategy

1. Split x1-axis into 2
√

n intervals such that each contains at
most

√
n 1-boundaries.

2. For each boxes whose 1-boundaries contained in a 1-slab,
split the slab along its 2-boundaries

3. For all others, split the 1-slab along the
√

n-th 2-boundaries.

4. For each boxes whose 1- and 2- boundaries in a 2-slab, split
the slab along the 3-boundaries.

5. For all others, split the 2-slab along the
√

n-th 3-boundaries.

6. (repeat)
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Summary
Overmars and Yap, 1991

For d-dim. Klee’s measure problem, this algorithm

1. runs in O(nd/2 log n)-time with the partition tree.

2. uses O(nd/2) space
: This can be reduced to O(n) (only segment trees) by
interleaving the measuring step with the partitioning.
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Approach 2
Chen, 2013

Key ideas
The logarithmic factor (O(nd/2 log n)) comes from maintaining the
tree while sweeping.
Can we design a different partitioning method that is free from
maintaining a tree?

Klee’s measure problem Yonsei CS Theory Autumn ’24 27 / 35



Overview Introduction Space partitioning Summary

Modified problem

Problem (Modified version of the problem)
For a set of d-boxes B and an open box Γ, find the complement
volume of union of B within the domain Γ.

Example

Γ

1 4 8

1

3

5

AC(Γ) = 2
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Algorithm

1: function Measure(B, Γ)
Given: C is a fixed, small constant

2: if |B| < C then return the answer directly.
3: Simplify B
4: Cut Γ into two disjoint boxes ΓL and ΓR

5: return Measure({b ∩ ΓL | b ∈ B}, ΓL)
+ Measure({b ∩ ΓR | b ∈ B}, ΓR)

6: end function
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Simplification

▶ Remove all slabs (a box of {x | a ≤ xi ≤ b} form in Γ) and
adjust B and Γ.

▶ This costs linear time per axis.
▶ Note that the complement volume is preserved and all

remaining boxes have a (d − 2)-face intersecting with Γ.
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Partitioning
2-dim. case

▶ Split Γ into two open boxes at the median of x1-coord of all
(d − 2)-faces

▶ Swap axis number
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Partitioning
3+-dim. case

▶ Assign a weight 2(i+j)/d on all (d − 2)-faces perpendicular to xi

and xj-axes.
▶ The weight is bounded in [1, 4].

2(1+3)/3
2(1+2)/32(1+2)/3

x1

x3

Figure: 1-faces of 3-d boxes intersecting the open domain
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Partitioning
3+-dim. case

▶ Find a weighted median m among the intersection of the
(d − 2) faces and the x1-axis, and cut Γ through the
hyperplane x1 = m.

2(1+3)/3
2(1+2)/32(1+2)/3

x1

x3

Figure: 1-faces of 3-d boxes intersecting the open domain
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Partitioning
3+-dim. case

▶ Shift axis indices (1→ d → (d − 1)→ · · · → 3→ 2→ 1).
▶ Effectively a k-d tree.

x3

x2

Figure: 1-faces of 3-d boxes intersecting the open domain
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Partitioning
Weight decrease

▶ After cutting, (d − 2)-faces not perpendicular to x1-axis
(i, j , 1) will have weight 2(i−1+j−1)/d, decreased by 22/d.

▶ (d − 2)-faces perpendicular to x1 axis (j , 1) will have weight
2(d+j−1)/d, increased by 2(d−2)/d. Note that these faces are split
into smaller domains by half, reducing the total weight by half.

Klee’s measure problem Yonsei CS Theory Autumn ’24 33 / 35



Overview Introduction Space partitioning Summary

Analysis

Simplifying ▶ O(n) for each axis to identify a slab
▶ O(n) for each axis to adjust box boundaries

Cut ▶ Finding (weighted) median is O(n) after sorting
▶ The total weight is decreased by 22/d for each

cutting step.

Theorem
The algorithm runs in O(nd/2)-time.
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Algorithm Summary

Dim. Time complexity
1 Θ(n log n)3

2 Θ(n log n)
3+ Ω(n log n)–O(nd/2)

3O(n log p) where p is min. #lines stabbing all intervals.
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