Klee's measure problem

Hyunjoon Cheon

Oct. 17, 2024

Overview

[Introduction](#page-2-0)

[Space partitioning](#page-18-0)

[Summary](#page-63-0)

Find the colored area

 $A = ?$

Find the colored area

 $A = 25$

Find the colored area

 $A = 25 = 2 + 15 + 8$

Find the colored area

 $A = 25 = 2 + 6 + 6 + 3 + 8$

Find the colored area

 $A = 25 = 16 + 15 - 6$

Find the colored area

 $A = 25 = 40 - 15$

Today's Topic

Problem (Klee's measure problem)

Given a set $B = \{b_1, b_2, \ldots, b_n\}$ of *n d*-dimensional boxes, find the volume of the union of all boxes in *B*.

Definition (Hyperrectangle a.k.a. Box)

A hyperrectangle is a Cartesian product of finite intervals.

What we will discuss

▶ Two space partitioning approaches toward Klee's measure problem.

The first steps: 1-dim. case Klee, 1977

The first steps: 1-dim. case Klee, 1977

This trivial algorithm

- 1. utilizes sweeping
- 2. uses no special data structures
- 3. runs in
	- \triangleright $O(n \log n)$ -time¹ ($O(n)$ w/ sorted input)
	- \triangleright $\Theta(n)$ -space $(O(1)$ w/ sorted input)

¹ Actually $O(n \log p)$, where p is the minimum number of lines stabbing all intervals

Bentley, 1977

Bentley, 1977

Try sweeping!

Bentley, 1977

The volume differential is $dx \cdot ($ measure of the cross section)

Bentley, 1977

Measure intervals and compute the volume of the slab

Bentley, 1977

This algorithm²

- 1. uses sweeping
- 2. uses segment tree maintaining partial measure of corresponding intervals
- 3. runs in
	- \triangleright $O(n \log n)$ -time (at most 2*n* updates on segment tree)
	- \blacktriangleright $\Theta(n)$ -space

²The article is unpublished. Referred to Leeuwen and Wood, 1981 instead.

Beyond 3-dimension

- ▶ Bentley's algorithm easily extends to *d*-dimensional boxes, where $d \geq 2$ is arbitrary integer
- ▶ Shows $O(n^{d-1} \log n)$ running time.
- ▶ Unfortunately, the known (non-tight) lower bound is Ω(*n* log *n*) regardless of the dimensionality.
- ▶ How can we design improved algorithms?

Space partitioning

▶ Partitioning a given (euclidean) space.

Figure: Penrose tiling

- \blacktriangleright *k*-d tree
- ▶ Quadtree/Octree
- ▶ BinarySpacePartitioning tree
- ▶ and many others...

Which one is effective?

- ▶ Problem-by-problem.
- \blacktriangleright Key is *how* to partition the space. Note: the sweeping algorithms effectively partition the space into slabs in which some "characteristics" are preserved.
- ▶ We will see two approaches for the Klee's measure problem.

Approach 1 Overmars and Yap, 1991

Key ideas

The linear increase $(O(n^{d-1}\log n))$ w.r.t. dimensionality is due to the recursive structure of the computation. Suppose we sweep the whole space along the last (*xd*) axis. Can we maintain the $(d-1)$ -dim. cross section in a single data structure?

Figure: Trellis (취병)

Idea

The volume is $\prod L_i - \prod (L_i - M_i)$ and computing L_i 's and M_i 's are simple problems.

Divide the space into this trellis pattern!

Data structure

Orthogonal partition tree

- ▶ A balanced binary tree.
- A node α has an associated region C_{α} ; C_{root} is the whole space.
- **▶ For any two children** α_1 **and** α_2 **of a node** α **, {** C_{α_1} **,** C_{α_2} **} is a nartition of** C partition of C_{α} .

Data structure

Orthogonal partition tree for Klee's measure problem

- $\blacktriangleright M_{\alpha}$ is the total measure under the subtree rooted at α .
- ▶ *T_α* is the number of boxes covering whole C_{α} but not $C_{parent(\alpha)}$.

► If
$$
T_\alpha > 0
$$
 (C_α is fully covered), $M_\alpha = V(C_\alpha)$
▶ **Fig. M** = $M_{\alpha, \alpha} + M_{\alpha, \alpha}$

$$
\blacktriangleright \text{Else } M_{\alpha} = M_{left(\alpha)} + M_{right(\alpha)}
$$

A leaf λ maintains a set B_λ of boxes that intersect with the interior of C_{λ} but do not cover $C_{parent(\lambda)}$.

Terms

Definition (*i*-boundary)

For a *d*-box, its *i*-boundaries are its (*d* −1)-dim. faces perpendicular to x_i -axis. Note that a *d*-box has two *i*-boundaries for all $1 \le i \le d$.

Example

The red face $[0, 1] \times \{0\} \times [0, 1]$ is a 2-boundary of the unit cube.

- 1. Split x_1 -axis into 2 \overline{n} intervals such that each contains at $\frac{1}{2}$ with $\frac{1}{2}$ axis into 2 \sqrt{n} into 2 \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the [√] *n*-th 2-boundaries.

- 1. Split x_1 -axis into 2 √ \overline{n} intervals such that each contains at $\frac{1}{2}$ $\frac{1}{2}$ axis into 2 \sqrt{n} into 2 \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the [√] *n*-th 2-boundaries.

- 1. Split x_1 -axis into 2 √ \overline{n} intervals such that each contains at $\frac{1}{2}$ $\frac{1}{2}$ axis into 2 \sqrt{n} into 2 \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the [√] *n*-th 2-boundaries.

- 1. Split x_1 -axis into 2 √ \overline{n} intervals such that each contains at $\frac{1}{2}$ $\frac{1}{2}$ axis into 2 \sqrt{n} into 2 \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the [√] *n*-th 2-boundaries.

- 1. Split x_1 -axis into 2 √ \overline{n} intervals such that each contains at $\frac{1}{2}$ $\frac{1}{2}$ axis into 2 \sqrt{n} into 2 \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the [√] *n*-th 2-boundaries.

- 1. Split x_1 -axis into 2 √ \overline{n} intervals such that each contains at $\frac{1}{2}$ $\frac{1}{2}$ axis into 2 \sqrt{n} into 2 \sqrt{n} 1-boundaries.
- 2. For each 1-boundaries contained in a slab, split the slab along its 2-boundaries
- 3. For all other 2-boundaries, split along the [√] *n*-th 2-boundaries.

Characteristics

For 2-dimension case,

- 1. The space is divided into $O(n)$ cells. √ √
	- : 2 *n* slabs split into 4 \overline{n} cells.
- 2. Each box of *B* partially covers at most *O*(√ \overline{n}) cells. √
	- : Each vertical line(1-boundary) cut through 4 \overline{n} cells and horizontal line cut through 2 √ \overline{n} slabs.
- 3. No cell contains vertices in its interior.
	- : The vertices are in some horizontal boundaries.
	- : The boxes are in trellis pattern
- 4. Each cell has at most *O*(√ $\overline{n})$ boxes partially covering it. $\frac{1}{2}$ call contains at most \sqrt{n} 1-boundaries and a slab contains at most [√] *n* 2-boundaries.

Data structure

Orthogonal partition tree

Characteristics

Orthogonal partition tree

For 2-dimension case,

- 1. The tree has $O(n)$ leaves.
- 2. Each box stored in at most *O*(√ \overline{n}) leaves.
- 3. No *^C*λ's contain vertices in its interior.
- 4. Each leaf stores at most *O*(√ \overline{n}) boxes.
- 5. Each box influences at most *O*(√ \overline{n} log *n*) T_α 's. : from 1 and 2.

Analysis

3-dim. case

- Box insertion \blacktriangleright A box is stored in at most $O(\sqrt{2})$ *n*) leaves (*O*(√ *n* log *n*))
	- $\blacktriangleright M_{\lambda}$ is computed from two segment trees for each axis. (*O*(√ *n* log *n*))
	- **►** M_{α} and T_{α} is updated for all nodes α between
the leaves λ and the root $(O(\sqrt{n}\log n))$ updates the leaves λ and the root $(O(\sqrt{n}\log n)$ updates)

Box deletion Similar to inserting analysis

Measure query M_{root} is the answer. $O(1)$.

Theorem

The algorithm runs in *O*(*n* √ $\overline{n}\log n$ -time.

Extend to higher dimension

Partition strategy

- 1. Split x_1 -axis into 2 √ *n* intervals such that each contains at $\frac{1}{2}$ $\frac{1}{2}$ axis into 2 \sqrt{n} into 2 \sqrt{n} 1-boundaries.
- 2. For each boxes whose 1-boundaries contained in a 1-slab, split the slab along its 2-boundaries
- 3. For all others, split the 1-slab along the \sqrt{n} -th 2-boundaries.
- 4. For each boxes whose 1- and 2- boundaries in a 2-slab, split the slab along the 3-boundaries.
- 5. For all others, split the 2-slab along the \sqrt{n} -th 3-boundaries.

6. (repeat)

Extend to higher dimension

Partition strategy

- 1. Split x_1 -axis into 2 √ *n* intervals such that each contains at $\frac{1}{2}$ $\frac{1}{2}$ axis into 2 \sqrt{n} into 2 \sqrt{n} 1-boundaries.
- 2. For each boxes whose 1-boundaries contained in a 1-slab, split the slab along its 2-boundaries
- 3. For all others, split the 1-slab along the \sqrt{n} -th 2-boundaries.
- 4. For each boxes whose 1- and 2- boundaries in a 2-slab, split the slab along the 3-boundaries.
- 5. For all others, split the 2-slab along the \sqrt{n} -th 3-boundaries.

6. (repeat)

Extend to higher dimension

Partition strategy

- 1. Split x_1 -axis into 2 √ *n* intervals such that each contains at $\frac{1}{2}$ $\frac{1}{2}$ axis into 2 \sqrt{n} into 2 \sqrt{n} 1-boundaries.
- 2. For each boxes whose 1-boundaries contained in a 1-slab, split the slab along its 2-boundaries
- 3. For all others, split the 1-slab along the \sqrt{n} -th 2-boundaries.
- 4. For each boxes whose 1- and 2- boundaries in a 2-slab, split the slab along the 3-boundaries.
- 5. For all others, split the 2-slab along the \sqrt{n} -th 3-boundaries.

6. (repeat)

Summary Overmars and Yap, 1991

For *d*-dim. Klee's measure problem, this algorithm

- 1. runs in $O(n^{d/2} \log n)$ -time with the partition tree.
- 2. uses $O(n^{d/2})$ space
	- : This can be reduced to *O*(*n*) (only segment trees) by interleaving the measuring step with the partitioning.

Approach 2

Chen, 2013

Key ideas

The logarithmic factor $(O(n^{d/2}\log n))$ comes from maintaining the tree while sweeping. Can we design a different partitioning method that is free from maintaining a tree?

Modified problem

Problem (Modified version of the problem)

For a set of *d*-boxes *B* and an open box Γ, find the complement volume of union of *B* within the domain Γ.

Example

 $A^C(\Gamma) = 2$

Algorithm

- 1: **function** Measure(*B*, Γ)
- **Given:** *C* is a fixed, small constant
	- 2: **if** $|B| < C$ **then return** the answer directly.
3: Simplify B
	- 3: Simplify *B*
	- 4: Cut Γ into two disjoint boxes Γ*^L* and Γ*^R*
	- 5: **return** Measure({*b* ∩ Γ*^L* | *b* ∈ *B*}, Γ*L*)
		- + Measure({ $b \cap \Gamma_R$ | $b \in B$ }, Γ_R)
	- 6: **end function**

Simplification

- ▶ Remove all slabs (a box of {*^x* [|] *^a* [≤] *^xⁱ* [≤] *^b*} form in ^Γ) and adjust *B* and Γ.
- \blacktriangleright This costs linear time per axis.
- ▶ Note that the complement volume is preserved and all remaining boxes have a $(d - 2)$ -face intersecting with Γ.

2-dim. case

- ▶ Split ^Γ into two open boxes at the median of *^x*1-coord of all (*d* − 2)-faces
- \blacktriangleright Swap axis number

3+-dim. case

▶ Assign a weight 2 (*i*+*j*)/*^d* on all (*d* − 2)-faces perpendicular to *xⁱ* and *xj*-axes.

 \blacktriangleright The weight is bounded in [1,4].

Figure: 1-faces of 3-d boxes intersecting the open domain

3+-dim. case

▶ Find a weighted median *m* among the intersection of the $(d-2)$ faces and the *x*₁-axis, and cut Γ through the hyperplane $x_1 = m$.

Figure: 1-faces of 3-d boxes intersecting the open domain

3+-dim. case

► Shift axis indices $(1 \rightarrow d \rightarrow (d-1) \rightarrow \cdots \rightarrow 3 \rightarrow 2 \rightarrow 1)$.

▶ Effectively a *k*-d tree.

Figure: 1-faces of 3-d boxes intersecting the open domain

Partitioning Weight decrease

- ▶ After cutting, (*^d* [−] 2)-faces not perpendicular to *^x*1-axis $(i, j ≠ 1)$ will have weight $2^{(i-1+j-1)/d}$, decreased by $2^{2/d}$.
- ▶ $(d-2)$ -faces perpendicular to x_1 axis $(j \neq 1)$ will have weight 2 (*d*+*j*−1)/*^d* , increased by 2 (*d*−2)/*^d* . Note that these faces are split into smaller domains by half, reducing the total weight by half.

Analysis

Simplifying \rightarrow *O(n)* for each axis to identify a slab

- \triangleright $O(n)$ for each axis to adjust box boundaries
- Cut \triangleright Finding (weighted) median is $O(n)$ after sorting
	- \blacktriangleright The total weight is decreased by $2^{2/d}$ for each cutting step.

Theorem

The algorithm runs in $O(n^{d/2})$ -time.

Algorithm Summary

 $3O(n \log p)$ where *p* is min. #lines stabbing all intervals.