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Quantum Basics



Quantum basics

Qubit [y) = «|0) + B|1) = ()whereaﬁE(Csuch that aa™ + " = 1.
© W) = WY = (@89 (§) = aa” + BB = 1

aa® af”

- Wl =(5) @8 = (o pg) EIW@N=1

Tensor product

Hermitian matrix M = M*
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Quantum basics =l 0 x=[) o =0 G z=[5 2 wwi=(5. 55)

Fact. For any single qubit state |y), the matrix |){(y| can be uniquely written as %(1 + cxX +cyY + c;2)
where (cy, cy, cz) is on the unit sphere in R3.

proof)

1 o7 1 0 171 _1 . 0 o1 1 . 0 o1 1
o =50+, ) J=sa+m. ] =sx-m ) d]=su-2)

%(aa*(l +Z) + aB (X +i¥) + Ba*(X —iY) + BB*(I - 7))
B %((aa* + BB + (af* + pa)X + (iaf* — ifa”)Y + (aa” — fB*)Z)

1
= E(I + CXX + CyY + CZZ)

Observe (cy, ¢y, cz) € R3 and ||(cy, cy, c)|| = 1.
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Quantum basics

Fact. For any single qubit state |y), the matrix |){(y| can be uniquely written as %(1 + cxX +cyY + c;2)
where (cy, cy, cz) is on the unit sphere in R3.

We will refer to this the vector (cy, cy, c;) Bloch vector for |).
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Background and Motivation



Some background...

Hamiltonian of m
a tonian of a syste e R (obtainable from a measurement)

An operator (or Hermitian matrix) s.t. each eigenvalue = one possible value of the system's total energy.

k-local Hamiltonian H
A Hermitian matrix acting on n qubits which is 2(Hamiltonian Terms), each acting upon at most k qubits.

k-local Hamiltonian problem

Given a k-local Hamiltonian H, find the smallest eigenvalue A of H (= minimum energy of H)

“Quantum analogue of k-CSPs (constraint satisfaction problems)”
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Some background...

2-local Hamiltonian problem
Given H=Z(Hamiltonian Terms), each acting upon 2 qubits, find A

— Given a graph with n vertices (= qubits) and m edges (= Hamiltonian terms), find A_;...

Input: a physical system that looks like

like like
quantum quantum
constraints variables
Hlyp) = Ayp)
Proposition. 1,,,;,(H) = min (W|H|Y). (= expectation value of H) W) = (PIAp)
n qubits state [y)
(WIH[Y) = AplP)

(WIH[p) = 2
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Some background...

(Quantum) Heisenberg model
A family of 2-local Hamiltonians first studied by Heisenberg (1928).

The anti-ferromagnetic Heisenberg XYZ model
Given a system G, Each Hamiltonian Term acts on 2 qubits u and v

HEEL = Z X, X, +Y, ®Y, +7Z, R Z,]

There are m number of
(u,v)EE

Hamiltonian Terms

Zeitschrift fiir Physik 49, 619-636 (1928)

619

Zur Theorie des Ferromagnetismus.
Von W. Helsenberg in Leipzig.
Mit 1 Abbildung. (Eingegangen am 20. Mai 1928.)

Die Weissschen Molekularkrifte werden guriickgefilhrt aul ¢in quantenmechanisches
Austauschphiinomen; und gwar handelt es sich um diejenigen Austauschvorgiinge,
die in letzter Zeit von Heitler und London mit Erfolg zur Dentung der hombo-

Fig. 2. Ground state of the Heisenberg antiferromagnet on the triangular lattice with long-range p-ula.reu Valenzkriifte hernnga:ngen worden sind.
antiferromagnetic order. This state is not an example of gapped quantum matter.

Figure from [arXiv:1203.4565v4] Presented by Changyeol Lee



Quantum Max-Cut

A natural maximization version of the anti-ferromagnetic Heisenberg XYZ model.

“Hamiltonian” for Quantum Max-Cut

Hg = z %[Iu®lv_Xu®Xv_Yu®Yv_Zu®Zv]

(u,v)EE
1
The objective is to find H=2(QI-X®X-YQ®Y-2Q2)
Amax(Hg) = nqubirtrslgéte |¢>(¢|HG|¢> 0 0 0 0
|0 172 172 0

0 —-1/2 1/2 0
 Max energy state of H; = Min energy state of HIE!S 0 0 0 0

However, two variants differ is in their approximability (more details later)

* H; is an operator, not a quantum gate (i.e., not unitary).

* And no quantum circuit today!
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Max-Cut

Given a graph G = (V,E), a cutis a function f:V — {+1}.

We say an edge (u,v) is on the cut f iff f(u) # f(v) iff%[l —fw)f)] =1.

The value of the cut f is #(edges on f) = Z(u’v)EE% [1—-fw)fw)].

Find the value of the max cut, i.e., find

1
max > Sl f@f @)
" (Wv)€EE



Why Quantum “Max-Cut™?

ConsiderH =1QI1—-7Z QK Z

o1-13 Yol -

el =l=l

What is a maximum energy state of H'?

0 0 0
1 00
0 1 0
00 1 _
000
B _lo 2 o
IRI-Z®Z=|y & -
0 0 0
(00|H'|00) = 0
(01|H’|01) = 2
(10|H’|10) = 2
(11|H'|11) = 0
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Why Quantum “Max-Cut™?

: , 1
Consider H; = Ez(u,v)EE[lu RQIL,—7Z,Q7Z,].

A state with max energy of H; corresponds to max cut of G.

1
max > Sl = f@f @)
" (wv)€EE

1
Amax( 2 E[Iu ® Iv - Zu ® Zv])
(u,v)EE



Why Quantum “Max-Cut™?

1
Ho= ) 2 ®L-X,@X,~ V@Y, ~ 2,87,
(u,v)EE

« —7,Q Z,. measure in Z basis, -1 if same, +1 if different

Similarly,
« —X, ® X,: measure in X basis, -1 if same, +1 if different

« —Y, ®Y,: measure inY basis, -1 if same, +1 if different

Similar to classical Max-Cut in X,Y and Z bases.



Why Quantum “Max-Cut™?

One more analogy...?

1
M — _ T
Jmax ) S[= f@f )] max xTLgx

(u,v)EE

where L; = D — A is the Laplacian matrix of G.

Recall,
Amax(Hg) = max (Y[Hg )

n qubits state |)



Approximability. Quantum Max-Cut vs Heisenberg model

For the Quantum Max-Cut H
* 0.498-approx. (Gharibian and Parekh, 2019)

« outputs a product state using basic SDP
« 0.531-approx. (Anshu, Gosset and Morenz, 2020)
« 0.533-approx. (Parekh and Thompson, 2020)

« 0.584-approx. (Lee, 2024)

« outputs products of at most 2-qubit states (using level-2 Quantum Lasserre SDP)

For the anti-ferromagnetic Heisenberg XYZ model HF'E!S

* O(logn)-approx. (Bravyi et al., 2019)

« outputs a product state

Presented by Changyeol Lee
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Approximability. Max-Cut vs Ising model

1
For the Max-Cut f:ﬁﬁl}z(u»v)EEE [1—-f(w)f )]

« 0.878-approx. (Goemans and Williamson, 1995)
* uses basic SDP

« optimal unless P=NP assuming UGC (Unique Game Conjecture)

For the (anti-ferromagnetic) Ising model . mlr}rl}z(u weelf W fW)]

* O(logn)-approx. (Charikar and Wirth, 2004)

Presented by Changyeol Lee

17



Max-Cut Algorithm

Goemans and Williamson (1995)
Briet, Oliveira, and Vallentin (2010)
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Max-Cut and SDP relaxation

Let S471 = {x € R?| ||x]| = 1} be the d-dimensional unit sphere in R%.

1
MC(6) = max, D 5[l Ff)]
' (u,v)EE

SDP relaxation of Max-Cut:
1
SDPyc(G) ==  max E > [1 - (fspp(W), fspp(V))]

fspp:V—-S5n1
(u,v)EE

Why is it a relaxation?
« Considerany f:V - S%. Let fspp(u) = [f(u),0, ...,0] € S* . Clearly, f(w)f(v) = {fspp(w), fspp(V)).

Thus, we have SDPyc(G) = MC(G).
Note. We can find fspp of value SDPyc(G) — € in time poly(n) - log1/e.

Presented by Changyeol Lee
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“Hyperplane” rounding fspp: V — S™~*into f:V — §°

1. Sample a random 1 x n vector (hyperplane) z = (z4, ..., z,) consisting of n i.i.d. standard Gaussians.

Zfspp(u)

2. Foreachu €V, set f(u) = Sign(szDP(u)) ~ lzfspp@ll

i.e., project the vector fspp(u) onto the hyperplane z and check its sign.

Goemans and Williamson (1995) showed that for each (u,v) € E,

2arccos py, 1

1
E, |5 (1 - fa)f )| = (1 = {fspp ), fipp ()

(1 — pyy) 2
where p,, = {fsppW), fspp (V). prob. (w,v) on f ratio SDPyic((w, v))
. . 2arccosp
Let agw = pEII[l_IEﬂ ) > 0.878.
By linearity of expectation, ignoring additive error of e

2

1 1 |
[Ezl z > [1-— f(u)f(v)]] = agw z =[1 = {fspp(W), fspp(¥))] = agw - SDPy(G) > 0.878 - MC(G)

(wv)€EE (wv)EE

Presented by Changyeol Lee
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Rank k Max-Cut and SDP relaxation

1
MCK(6) = max ) 5 [1— (), ()]
' (wv)€EE

1
SDPuc(@) = max > Z[1=(fopp (), fspp(¥))]
' (u,v)EE

“Projection” rounding (fspp:V = S™ ! into f:V — §k=1)
Zfspp(uw)
I1ZfsppWII

- Sample a random k x n matirx Z consisting of kn i.i.d. standard Gaussians; and Vu € V, f(u) =

showed
—F (k puv)

uv

> (1 — ({fspp(W), fspp(¥)))

E, [ (0~ (F@), f @) = -

k+1

2
M= 11k : : : :
Eé))> p-oF (2,2 S+ Lp ) where ,F; (-,-;-;-) is the Gaussian hypergeometric function.

. . 1-F*(k,p)
-et agovio) = perP—T,ﬂ 1-p

where F*(k,p) = %(

. aBOV(l) = agw > 0878, aBov(z) > 0934, aBov(3) > 0956, cee, aBOV(TL) =1
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Quantum Max-Cut Algorithm



Quantum Max-Cut algorithm and ansatz

. 1
Given HG = Z(u,v)EEZ [Iu ® Iv - Xu ® Xv - Yu ® Yv _ Zu ® Zv]’

find QMC(G) = max (W|H; ) oroptimal |y).

n qubits state [y)

We consider a classical algorithm.
« Output a quantum state |y) = Describe |y) classically

* |y) must be efficiently describable.

Q. How to design an ansatz to obtain a good approximation ratio?

* 0.498-approximation algorithm of Gharibian and Parekh (2019) uses a product state.

) = 11) @ [1h2) @ -+ & |ihn)

« Subsequent works (with better ratio) uses a products of at most 2-qubit states. E.g.,
V) = Y1) Q@ |Y3) ® - Q |Y,,) (also efficiently describable)

(entangled)

Presented by Changyeol Lee
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Quantum Max-Cut algorithm and product state ansatz

. 1
Given HG = Z(u,v)EEZ [Iu ® Iv - Xu ® Xv — Yu ® Yv - Zu ® ZU]’

find QMC(G) = max (W|He|y) oroptimal |y).

n qubits state |Y)
We focus on the product state ansatz. |Y) = |Y1) Q [Y,) ® - Q |,,)

The product state value of H; is

QMCprop(G) = (YelHglYe)

max
[V6)=Quev|vy) :
1 qubit state |y,,)

Somehow, we want to use the projection rounding.

Can we rewrite QMCprop(6) like MCx(6) = max S, e [1— (FQW), fF(0))]?

f:v—osk-1

Presented by Changyeol Lee
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Rewriting the product state value

Proposition. QMCpgop (G) = (blHglp) = max, T mery (1= 4f (), f W)

max
1V6)=Quvev|¥y)
1 qubit state |y,)

proof) First observe (s |HglYs) = trHglYe )XWl = trlHg Qypey [WPu) W]
Foreachv €V, let f(v) = (vy, vy, v;) € S? be the Bloch vector for [i,).
Fix any (u,v) € E.

1
tr [Z I, @1, — Xy @ Xy — Y, @Yy — Zy, @ Zyl - [ )| @ 190) 0y |

1 1 1
1 X?=Y*=7%=1
= 7 11— uxvx —uyvy — uzvy] XY = iZ,YZ = iX,and ZX = iY
) XY = —YX,YZ = —ZY,and ZX = —XZ
= Z[l —(f(w), f(W)] Ltr[X] =tr[Y] =tr[Z] =0
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Quantum Max-Cut algorithm and product state ansatz

1
WiCrron(®) = may, Z)EZ [1 = (£, F@)]

Note. QMCprop(G) < % |E| always (even when QMC(G) can be as large as |E|).

Observation. QMCprop(G) = % - MC3(G).

Can we apply the algorithm of for Rank 3 Max-Cut?



Quantum Max-Cut algorithm and product state ansatz

1
WiCrron(®) = may, Z)EZ [1 = (£, F@)]

Claim. Similar to Rank 3 Max-Cut, we obtain an algorithm with approximation ratio aggys)-

1. SDP Relaxation of QMC(G)

2. Projection rounding

1 1
z Ez [Z (1- (f(u)»f(v»)] = ABOV(3) * z Z(l — {fspp(w), fspp(¥))) = apoy(z) - SDP(G)

(wv)€EE (u,v)EE

Presented by Changyeol Lee
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Quantum Max-Cut algorithm and product state ansatz

1
WiCrron(®) = may, Z)EZ [1 = (£, F@)]

Wrong Claim. Similar to Rank 3 Max-Cut, we obtain an algorithm with approximation ratio aggy3) > 0.956.

1. SDP Relaxation of QMC(G)

2. Projection rounding

1 1
z Ez [Z (1- (f(u)»f(v)))] = ABOV(3) * z Z(l — (fspp(W), fspp(v))) = apoy(z) - SDP(G)

(wv)€EE (u,v)EE
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Quantum Max-Cut algorithm and product state ansatz

1
WiCrron(®) = may, Z)EZ [1 = (£, F@)]

Correct Claim. There is an algorithm that outputs a value > aggy(z) - [(best) product state value].

To say “there is an algorithm that outputs a value = a - QMC(G)” using a similar arguments,

we need a valid relaxation.




SDP relaxation for Quantum Max-Cut

Proposition.

1
SDPomc(G) = max E —[1 = 3(fspp (W), fspp(V))] .
fspp:V—-S™ 4
(u,v)EE

Let [y) be a n-qubit quantum state. The energy of |y) is as follows:

1
(1/)|HG|1/)> = Z Z(lpl[lu QL —-X, X, - Y, ®Y, —Z, ®Zv]|1/)>

(u,v)EE

Consider 3n number of vectors o, |y) forall ¢ € {X,Y,Z}and forallu € V.

Let M be a 3n x 3n (Gram) matrix whose rows and columns are indexed by o,, such that

M(oy, a5) = {(oulP), a'u1P)) = (Wloyay ).

Then (lHgl) = Sy pyery (1 — M(Xy Xp) — M(Xy, X,) — M(Xy, X,)].

— We write a program that maximizes (y|H|y) over all “valid” matrix M.
“Valid relaxation”



SDP relaxation for Quantum Max-Cut

Proposition.

1
SDPomc(G) = max E —[1 = 3(fspp(W), fspp(V))] .
fspp:V—-S™ 4
(u,v)EE

Let us derive some constraint that M satisfies.
(1) M is Hermitian and PSD.

(2) M (o, 0,) = 1 for each g,,.
(3) M(oy, 0,) = M (o, 0,) for each g, g, s.t. u # v. (Only real part exists.)
)

(4) M (o, 0,,) = —M (0o, g,,) for each oy, 0, s.t. ¢ # d'. (No real part exists.)

We solve the following optimization problem using SDP:

1
maximize SDPqyc(G) = Z 7 [1-M(X,,X,) —MX, X, — M(X,,X,)],
(u,v)EE
subject to (1) — (4).



SDP relaxation for Quantum Max-Cut

Proposition.

1
SDPomc(G) = max E —[1 = 3(fspp(W), fspp(V))] .
fspp:V—-S™ 4
(u,v)EE

Let us derive some constraint that M satisfies.
(1) M is Hermitian and PSD.

(2) M (o, 0,) = 1 for each g,,.
(3) M(oy, 0,) = M (o, 0,) for each g, g, s.t. u # v. (Only real part exists.)
)

(4) M (o, 0,,) = —M (0o, g,,) for each oy, 0, s.t. ¢ # ¢'. (No real part exists.)

We solve the following optimization problem using SDP:

1
maximize SDPqyc(G) = z 7 [1-M(X,,X,) —MX, X, — M(X,,X,)],
(u,v)EE
subject to (1) — (4).



SDP relaxation for Quantum Max-Cut

Proposition.

1
SDPomc(G) = max E —[1 = 3(fspp(W), fspp(V))] .
fspp:V—-S™ 4
(u,v)EE

Let us derive some constraint that M satisfies.
(1) M is Hermitian and PSD.

(2) M (o, 0,) = 1 for each g,,.
(3) M(oy, 0,) = M (o, 0,) for each g, g, s.t. u # v. (Only real part exists.)
)

(4) M (o, 0,,) = 0 for each g, 0;, s.t. o # ¢'. (Trivially, only real part exists.)

We solve the following optimization problem using SDP:

1
maximize SDPqyyc(G) = Z 7 [1-M(X,,X,) —MX, X, — M(X,,X,)],
(u,v)EE
subject to (1) — (4).



SDP relaxation for Quantum Max-Cut

Proposition.

1
SDPomc(G) = max E —[1 = 3(fspp(W), fspp(V))] .
fspp:V—-S™ 4
(u,v)EE

Let us derive some constraint that M satisfies.
(1) M is symmetric and PSD.

(2) M (o, 0,) = 1 for each g,,.

w P »m o w EL) = Cs - -

(4) M (o, 0,,) = 0 for each g, 0;, s.t. 0 # ¢'. (Trivially, only real part exists.)

We solve the following optimization problem using SDP:

1
maximize SDPqyyc(G) = z 7 [1-M(X,,X,) —MX, X, — M(X,,X,)],
(u,v)EE
subject to (1), (2) and (4). Can we solve this now?



SDP relaxation for Quantum Max-Cut

Proposition.

1
SDPomc(G) = max E —[1 = 3(fspp (W), fspp(V))] .
fspp:V—-S™ 4
(u,v)EE

Since M is real, symmetric 3n x 3n PSD matrix, there exists a function g:V x {X,Y, Z} - R3" such that

M(oy, 0y) = (g(u,0),g(v,0")).

1
maximize SDPomc(6) = Z [1=(gw,X), g, X)) —(g(w,Y), g, Y))— (9w, 2), g, 2))],
(u,v)EE

(g(u,0),g(u,c"))y=0, vueV,oc#+o €{X,Y, 27},

bject t
subject to g(,a):V > §3n-1 Yo € {X,Y,Z}.



SDP relaxation for Quantum Max-Cut

Proposition.

1
SDPomc(G) =  max E —[1 = 3{fspp(w), fspp(V))].
fSDp:V—>Sn 1 4
(u,v)EE

Since M is real, symmetric 3n x 3n PSD matrix, there exists a function g:V x {X,Y, Z} - R3" such that

M(oy, 0y) = (g(u,0),g(v,0")).

1
maximize SDPQMC(G) — Z z [1 — (g(u, X), g(U, X)) — (g(u, Y), g(U, Y)) — (g(u, Z)r g(v, Z))];
(u,v)EE
(g(u,0),g(u,c"))y=0, vueV,oc#+ao €{X,Y, 27},

bject t
SHbJectto g(,0):V - s, Vo € {X,Y,Z}.



SDP relaxation for Quantum Max-Cut

Proposition.

1
SDPQMC(G):f max Z Z[l—3<fsnp(u);f5Dp(v))]-

LHS < RHS



SDP relaxation for Quantum Max-Cut

Proposition.
1
SDPomc(G) = max z —[1 = 3{fspp (W), fspp(V))].
fspp:V-S™ 4
(u,v)EE
LHS < RHS
SDPQMc(G)

1
=2 ) =g @X),g"@X) = (g" @ V), g"®, )~ (g" W 2),g" (v, 2)]

(u,v)EE

[1-3(g"(w,2),9"(v,Z))]

wlr—\
.

[1-3(g"(w,Y),g"(v,Y))] +

UJIb—\
e

1
Z[l —3(g"(u, X), g"(w, X))] +

since g*(,0):V - s*°1

1 | 1
< max E 2 [1-3(g"(w,0),g"(w,o))] < max E —[1 = 3(fspp(w), fspp(v))]
, fspp:V—-S™ 4
(WVv)€EE (u,v)EE



SDP relaxation for Quantum Max-Cut

Proposition.
1
SDPquc(6) = max > (1= 3{fspp(), fspp()]
fspp:V—-S™ 4
(u,v)EE
LHS < RHS
RHS < LHS

Let g(u,0y) == e; @ fpp(v) Where o, = X,0, =Y and a3 = Z and ey, e,, e; are standard basis of R>.

(g(u,0),g(u,6")) =0, YvueV,o+ao' €{X,Y, Z}

g is feasible solution to the program, i.e., g(0):V — §3n1, Vo € {X,Y, 7).

and its objective value is equal to Z(u,v)eEi [1 — 3{fspp(w), fspp(W].

Presented by Changyeol Lee
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Quantum Max-Cut algorithm

1
WiCrron(®) = ma, ZEZ (1= (£ @, f@))

1
SDPouc(@) = max > 711 = 3(fspp (), fspp(¥))]

(1) Compute an optimal fspp and

(2) Apply the projection rounding (sample a matrix Z~N(0,1)3*" and Vvu € V, f(u) = ”ZSDPEZ;”)
SDP
Gharibian and Parekh (2019) showed, for any edge (u,v) € E,
1-F" (3 puv)
Ez 4(1 —(f), fW)| =z 15 (1= 3{fspp(), fspp()))
negative value for p € [1/3,1] uv
Let agp == mi LGP 5 0.498. By linearity of expectation,

1
pE€l-1,1/3] 1-3p

1 1
Ez[ > Z[l—(f(u),f(v»]lzfxcp- > 2[1=3(fspp() fspp ()] = agp - SDPquc(6) > 0498 - QMC(6G)

(u,v)EE
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Quantum Max-Cut algorithm

1
WiCrron(®) = ma, ZEZ (1= (£ @, f@))

1
SDPomc(G) = max E —[1 = 3{fspp(w), fspp(¥))]
fSDp:V—>Sn 4
(u,v)EE

(1) Compute an optimal fspp and

Zfspp(u) )
IZfspp ()l

(2) Apply the projection rounding (sample a matirx Z~N(0,1)3*" and Vvu € V, f(u) =
Gharibian and Parekh (2019) showed

"the above alg. outputs a product state whose value is at least agp - SDPyyc(G).

gives a 0.5-approx. alg. that outputs a product state

that uses 2" level of the quantum Lasserre hierarchy for H.

Presented by Changyeol Lee
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Hardness of Quantum Max-Cut



Hardness related to Max-Cut

The agw-approx. alg. of Goemans and Williamson (1995) for Max-Cut
« The basic SDP rounding alg.

* Feige and Schechtman (2002) showed the integrality gap of this SDP is agw
 Itis an optimal basic SDP rounding alg.!

« Khot et al. (2007) showed it is optimal unless P=NP assuming UGC
« Itis an optimal alg.!

 In particular, strengthening SDP does not improve the approx. ratio.

Raghavendra (2008) showed
“Assuming UGC, for each CSP, the “canonical alg.” based on the “basic” SDP is optimal unless P=NP.”
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Hardness related to Quantum Max-Cut

% vector-valued Borell's inequality

The agp-approx. alg. of Gharibian and Parekh (2019) for Quantum Max-Cut
« The (basic SDP rounding) + (product ansatz) alg.

« Hwang et al. (2023) showed the integrality gap of this SDP is agp assuming %
 Itis an optimal among all (basic SDP rounding) + (any ansatz) alg.!
« Strengthening SDP strictly improves the approx. ratio. (Anshu, Gosset and Morenz, 2020)
« Even when restricted to using the product state (Parekh and Thompson (2022)) assuming %
« Opposite to CSP where basic SDP is always optimal under UGC
* Hwang et al. (2023) showed NP-hard to do better than aggy sy assuming % and UGC
* Current best known is 0.584-approx. alg. by Lee (2024)
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Borell's inequality

Showing the integrality gap of SDPyc(:) is agw
- Construct a graph G* such that

1. The hyperplane rounding outputs exactly agy - SDPyc(G™).
2. The hyperplane rounding is optimal, i.e., it outputs MC(G™).

. MC(G) MC(G") agw - SDPyc(GY)
n < = = agw
VG SDPMc(G) SDPMc(G*) SDPMc(G*)

proof of step 2)
Recall the hyperplane rounding returns %(1 — E[r*(fspp(w)) - 7 (fspp(@))]) where *(fspp(9)) = —”ZEEESH

Given an optimal SDP soln fspp for SDPomc(G*), Borell’s (isoperimetric) inequality gives

E|r*(fspp W) - 7*(fspp ()] < E[r(fsppW)) - 7(fspp ()]
for any rounding r: R" — {+1}.
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Borell's inequality

Showing the integrality gap of SDPyuc(-) is agp
- Construct a graph G* such that
1. The (projection rounding) + (product ansatz) outputs exactly agp - SDPomc(G).

2. The (projection rounding) + (product ansatz) is optimal, i.e., it outputs QMC(G™).

proof of step 2)
Recall the (projection rounding) + (product ansatz) r*: R® - S2 returns i(l — E[{(r*(fspp(w)) - *(fspp()))])-

Given an optimal SDP soln fspp for SDPoMm(G*), vector-valued Borell’s inequality gives

E|r*(fspp(w)) - ™ (fspp ()] < E|r(fsppW)) - r(fspp(¥))]

for (any rounding) + (product ansatz) r: R" — S2.

Brandao and Harrow (2016) showed that the product state is (roughly) identical to an optimal state of high-
degree graph and G~ is a high-degree graph.
— For G*, (projection rounding) + (product ansatz) is optimal among (any rounding) + (any ansatz).
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Takeaway

Basics

o (WY) =tr[lyNy|]l =1
« |Y)Xy| is called density matrix of i)

 1-qubit |y) — Bloch vector (cy, cy,c;) € S?

Hamiltonian problem
« the term itself; quantum analogue of CSP

» eigenvalue of [) = (Y|H[Y) = tr[H|P){Wl]

« Ansatz. For quantum problem, we can design a classical algorithm that outputs a description of the state.
Quantum Max-Cut

« can design basic SDP and apply standard rounding technique as in classical Max-Cut

 strengthening SDP does help compared to classical world where basic SDP is optimal for all CSP

 even when using product state ansatz (assuming %)

And there are many open questions! (e.g., second level SDP is optimal?)
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