Basics on Differential Privacy

Changyeol Lee (Computer Science, Yonsei University)

Motivations and Backgrounds

Fundamental Limit

• For **all** techniques for *privacy-preserving data analysis*, *overly accurate* answers to *too many* questions will destroy privacy.

• Goal: postpone this as long as possible

Problematic Approaches

- Anonymization
 - removal of personally identifiable information
- Vulnerable to *linkage attack*.
 - the medical records of the governor were identified by matching anonymized medical data with publicly available voter registration records

Problematic Approaches

- Usage of queries over large set
 - reject questions about specific individuals
- Vulnerable to *differencing attack*.
 - "How many people have disease D?" 900
 - "How many people except Mr. X have disease D?" 899
 - Auditing can be disclosive and/or computationally infeasible.

Differential Privacy, a Promise

• A **promise** made by a *data curator*.

A data subject will **not** be *affected* by allowing his/her data to be used in any data analysis, no matter what other information sources are available.

Differential Privacy, a Promise

- A **promise** made by a *data curator*.
- Any sequence of responses to queries is "essentially" equally likely to occur, independent of the presence or absence of any individual.

Terminologies and Definitions

and some properties

- A curator *C* outputs an object. (e.g., statistics, data table, histogram)
 - Offline or non-interactive model: C outputs an object once for all.
 - Online or interactive model: Allows multiple queries. (which can be adaptive)
- Privacy-preserving data analysis: An analyst *A* knows "no more" about any individual after the analysis is done than *A* knew before the analysis was begun.

Mechanism

- A universe \mathcal{X} of data types
 - Heights) $\mathcal{X} = \{\dots, 174, 175, 176, \dots\}$
 - Disease D) $\mathcal{X} = \{(Alice has D), (Bob has D), (Chris has D), ... \}$
- A database x is multiset of \mathcal{X}
 - $x = \{\dots, 174, 174, 174, 175, 175, 176, 176, \dots\}$
 - $x = \{0, 1, 1, ...\}$

Mechanism

- A universe \mathcal{X} of data types
 - Heights) $\mathcal{X} = \{\dots, 174, 175, 176, \dots\}$

- Disease D) $\mathcal{X} = \{(Alice has D), (Bob has D), (Chris has D), ... \}$
- A database $x \in \mathbb{N}^{|\mathcal{X}|}$ is a histogram of \mathcal{X} N: nonneg int
 - $x = \{\dots, 3, 2, 5, \dots\}$
 - $x = \{0, 1, 1, ...\}$

Mechanism

- A universe \mathcal{X} and a database $x \in \mathbb{N}^{|\mathcal{X}|}$
- randomness (i.e., some random bits)
- a set of queries
 - "How many 177?" "Does Alice have disease D?"
- Output: a string (an object)
 - an output string can be a *synthetic database* $x' \in \mathbb{N}^{|\mathcal{X}|}$

Distance between databases

- The distance btw $x, y \in \mathbb{N}^{|\mathcal{X}|}$ is $||x y||_1 = \sum_{i=1,\dots,|\mathcal{X}|} |x_i y_i|$.
- We say x and y are neighboring (or $x \sim y$) if $||x y||_1 \leq 1$.
 - For the privacy of an individual.
 - For the privacy of a group of size k, $||x y||_1 \le k$.

Randomized Algorithm

set of probability distributions **Definition 2.1 (Probability Simplex).** Given a discrete set B, the probability simplex over B, denoted $\Delta(B)$ is defined to be:

$$\Delta(B) = \left\{ x \in \mathbb{R}^{|B|} : x_i \ge 0 \text{ for all } i \text{ and } \sum_{i=1}^{|B|} x_i = 1 \right\}$$

Definition 2.2 (Randomized Algorithm). A randomized algorithm \mathcal{M} with domain A and discrete range B is associated with a mapping $M: A \to \Delta(B)$. On input $a \in A$, the algorithm \mathcal{M} outputs $\mathcal{M}(a) = b$ with probability $(M(a))_b$ for each $b \in B$. The probability space is over the coin flips of the algorithm \mathcal{M} .

Differential Privacy

Definition 2.4 (Differential Privacy). A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ε, δ) -differentially private if for all $\mathcal{S} \subseteq \operatorname{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \leq 1$:

 $\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\varepsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta,$

where the probability space is over the coin flips of the mechanism \mathcal{M} . If $\delta = 0$, we say that \mathcal{M} is ε -differentially private.

*Randomness is essential!

ϵ -DP vs (ϵ, δ)-DP

- Consider (ϵ, δ) -DP \mathcal{M} where $\delta > 0$.
- For some x, there might (rarely) exists an outcome s s.t. $\exists y \sim x$ where $\Pr[\mathcal{M}(x) = s] \approx 0.01 \cdot \delta$ and $\Pr[\mathcal{M}(y) = s] \approx \delta$.
 - The probability of observing *s* is *significantly* much higher on *y*.
 - The privacy loss is large. Privacy loss = $\ln\left(\frac{\Pr[\mathcal{M}(x) = s]}{\Pr[\mathcal{M}(y) = s]}\right)$
- In ϵ -DP, this cannot happen.

Immune to post-processing

Proposition 2.1 (Post-Processing). Let $\mathcal{M} : \mathbb{N}^{|\mathcal{X}|} \to R$ be a randomized algorithm that is (ε, δ) -differentially private. Let $f : R \to R'$ be an arbitrary randomized mapping. Then $f \circ \mathcal{M} : \mathbb{N}^{|\mathcal{X}|} \to R'$ is (ε, δ) -differentially private.

- Sps a (future) event is determined based on the output of \mathcal{M} .
- Let \mathcal{E} be a set of all events and $f: \operatorname{Range}(\mathcal{M}) \to \mathcal{E}$ be a decider.
- Sps each individual *i* has an arbitrary utility over \mathcal{E} . Let $u_i: \mathcal{E} \to \mathbb{R}_{>0}$ denote the utility function.

 $\mathbb{E}_{E \sim f(\mathcal{M}(x))}[u_i(E)] =$

expected utility of *i* when *i* is in the dataset

- Sps a (future) event is determined based on the output of \mathcal{M} .
- Let \mathcal{E} be a set of all events and $f: \operatorname{Range}(\mathcal{M}) \to \mathcal{E}$ be a decider.
- Sps each individual i has an arbitrary utility over \mathcal{E} .

Let $u_i: \mathcal{E} \to \mathbb{R}_{\geq 0}$ denote the utility function.

$$\mathbb{E}_{E \sim f(\mathcal{M}(x))}[u_i(E)] = \sum_{E \in \mathcal{E}} u_i(E) \cdot \Pr_{f(\mathcal{M}(x))}[E]$$

expected utility of *i* when *i* is in the dataset

- Sps a (future) event is determined based on the output of \mathcal{M} .
- Let \mathcal{E} be a set of all events and $f: \operatorname{Range}(\mathcal{M}) \to \mathcal{E}$ be a decider.
- Sps each individual *i* has an arbitrary utility over \mathcal{E} . Let $u_i: \mathcal{E} \to \mathbb{R}_{>0}$ denote the utility function.

$$\mathbb{E}_{E \sim f(\mathcal{M}(x))}[u_i(E)] = \sum_{E \in \mathcal{E}} u_i(E) \cdot \Pr_{f(\mathcal{M}(x))}[E] \leq \sum_{E \in \mathcal{E}} u_i(E) \cdot e^{\epsilon} \Pr_{f(\mathcal{M}(y))}[E]$$
expected utility of *i*
when *i* is in the dataset
(if \mathcal{M} is ϵ -DP)
Immune to post-processing.

- Sps a (future) event is determined based on the output of \mathcal{M} .
- Let \mathcal{E} be a set of all events and $f: \operatorname{Range}(\mathcal{M}) \to \mathcal{E}$ be a decider.
- Sps each individual i has an arbitrary utility over \mathcal{E} .

Let $u_i: \mathcal{E} \to \mathbb{R}_{\geq 0}$ denote the utility function.

$$\mathbb{E}_{E \sim f(\mathcal{M}(x))}[u_i(E)] = \sum_{E \in \mathcal{E}} u_i(E) \cdot \Pr_{f(\mathcal{M}(x))}[E] \leq \sum_{E \in \mathcal{E}} u_i(E) \cdot e^{\epsilon} \Pr_{f(\mathcal{M}(y))}[E] = e^{\epsilon} \cdot \mathbb{E}_{E \sim f(\mathcal{M}(y))}[u_i(E)]$$
expected utility of *i*
when *i* is in the dataset
(if \mathcal{M} is ϵ -DP)
when *i* is not in the dataset
Immune to post-processing.

ϵ -DP for group

Theorem 2.2. Any $(\varepsilon, 0)$ -differentially private mechanism \mathcal{M} is $(k\varepsilon, 0)$ differentially private for groups of size k. That is, for all $||x - y||_1 \leq k$ and all $\mathcal{S} \subseteq \operatorname{Range}(\mathcal{M})$

 $\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(k\varepsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}],$

where the probability space is over the coin flips of the mechanism \mathcal{M} .

Accuracy

• One (informal) definition:

Let $x \in \mathbb{N}^{|\mathcal{X}|}$ be a database, $f: \mathbb{N}^{|\mathcal{X}|} \to R$ be a query. Let

 $output \in R$ be the output of the mechanism.

Pr[diff(f(x), output) being large] is small.

for some difference measure function diff.

• Note f(x) is the true answer.

Accuracy

• Another (informal) definition: Let $x \in \mathbb{N}^{|\mathcal{X}|}$ be a database, $f_1, \dots, f_k: \mathbb{N}^{|\mathcal{X}|} \to R$ be a set of queries. Let $output_i \in R$ be the output for each f_i .

 $\max_{i} \operatorname{diff}(f_i(x), output_i) \text{ is small.}$

for some difference measure function diff.

Simple Mechanism for Boolean question

Randomized Response

Randomized Response

- Sps the query "Does *i* have disease D?" is given. Consider the following mechanism \mathcal{M} with any database *x*:
 - with probability 1/2, output x_i ;
 - with probability 1/2, output uniform random bit.

•
$$\Pr[\mathcal{M}(x) = x_i] = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}.$$

• Consider y s.t. $x \sim y$ and $y_i \neq x_i$. $\Pr[\mathcal{M}(y) = x_i] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$.

Randomized Response

• \mathcal{M} is $(\ln 3, 0)$ -DP.

• You could say \mathcal{M} is (0, 1/2)-DP but if possible, we want to analyze it as ϵ -DP.

• In general, we want
$$\delta = O\left(\frac{1}{\text{superpoly}(\|x\|_1)}\right)$$

What we will cover

Other type of queries

- It's hard to answer numeric queries such as
 - "how many 177?"
 - "how many people in [170,175), [175,180), respectively?

Numeric queries

- Let $x \in \mathbb{N}^{|\mathcal{X}|}$ be a database, $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$ be a numeric query.
- Instead returning f(x), "Perturb"!
- Consider returning f(x) + Y where Y is a random vector in \mathbb{R}^k .
 - Scale of noise? Depends on Δf , the *sensitivity* of f.

$$\Delta f = \max_{x,y \in \mathbb{N}^{|\mathcal{X}|}: x \sim y} \|f(x) - f(y)\|$$

• captures the magnitude by which a single individual's data can change the function *f* in the worst case

Numeric queries

- Let $x \in \mathbb{N}^{|\mathcal{X}|}$ be a database, $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$ be a numeric query.
- Instead returning f(x), "Perturb"!
- Consider returning f(x) + Y where Y is a random vector in \mathbb{R}^k .
- Laplacian mech $Y_i \sim Lap(\Delta_1 f/\epsilon)$ is ϵ -DP

• Gauss. mech $Y_i \sim N(0, \sigma)$ w/ $\sigma \ge O\left(\ln \frac{1}{\delta}\right) \cdot \Delta_2(f)/\epsilon$ is (ϵ, δ) -DP.

Nonnumeric Queries with utility

• Random noise might be problematic in some cases.

Example 3.5 (Pumpkins.). Suppose we have an abundant supply of pumpkins and four bidders: A, F, I, K, where A, F, I each bid \$1.00 and K bids \$3.01. What is the optimal price? At \$3.01 the revenue is \$3.01, at \$3.00 and at \$1.00 the revenue is \$3.00, but at \$3.02 the revenue is zero!

- Output an object with probability based on its utility
- Exponential distribution is ϵ -DP.

Privacy on union of outputs

- Suppose we have a query $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}$.
- Let \mathcal{M}_1 and \mathcal{M}_2 be any ϵ -DP mechanism. (Could be $\mathcal{M}_1 = \mathcal{M}_2$)
- Let a_1 , a_2 be the answer for f of each mechanism, resp.
- Knowing only a_1 and a_2 preserves privacy of an individual.
- How about knowing both a_1 and a_2 ?
- It still preserves privacy but less privately than before.

Privacy on union of outputs

- Suppose we have a query $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}$.
- Let \mathcal{M}_1 and \mathcal{M}_2 be any ϵ -DP mechanism. (Could be $\mathcal{M}_1 = \mathcal{M}_2$)
- Let \mathcal{M} be the mechanism s.t. when given $\mathbf{f} \coloneqq (f, f)$,

it outputs $(\mathcal{M}_1(x,f),\mathcal{M}_2(x,f)).$

• \mathcal{M} is 2ϵ -DP.

- Combination of k number of ϵ -DP mechanisms is $k\epsilon$ -DP.
- Can we do better?

- Combination of k number of ϵ -DP mechanisms is $k\epsilon$ -DP.
- "Strong (or Advanced) composition"
 - better analysis gives better bound

Definition 3.7. We say that the family \mathcal{F} of database access mechanisms satisfies ε -differential privacy under k-fold adaptive composition if for every adversary A, we have $D_{\infty}(V^0 || V^1) \leq \varepsilon$ where V^b denotes the view of A in k-fold Composition Experiment b above.

 (ε, δ) -differential privacy under k-fold adaptive composition instead requires that $D^{\delta}_{\infty}(V^0 || V^1) \leq \varepsilon$.

Theorem 3.20 (Advanced Composition). For all $\varepsilon, \delta, \delta' \ge 0$, the class of (ε, δ) -differentially private mechanisms satisfies $(\varepsilon', k\delta + \delta')$ -differential privacy under k-fold adaptive composition for:

$$\varepsilon' = \sqrt{2k\ln(1/\delta')}\varepsilon + k\varepsilon(e^{\varepsilon} - 1).$$

Example 3.7. Suppose, over the course of his lifetime, Bob is a member of k = 10,000 ($\varepsilon_0, 0$)-differentially private databases. Assuming no coordination among these databases — the administrator of any given database may not even be aware of the existence of the other databases — what should be the value of ε_0 so that, over the course of his lifetime, Bob's cumulative privacy loss is bounded by $\varepsilon = 1$ with probability at least $1 - e^{-32}$? Theorem 3.20 says that, taking $\delta' = e^{-32}$ it suffices to have $\varepsilon_0 \leq 1/801$. This turns out to be essentially optimal against an arbitrary adversary, assuming no coordination among distinct differentially private databases.

- Need more than independent noise
 - to preserve privacy + ensuring accuracy
 - Sps we are given a query with sensitivity 1.
 - Answering a single query as $f(x) + Lap(1/\epsilon)$ gives ϵ -DP.
 - But $\{f_i(x) + Lap(1/\epsilon)\}_{i \in [k]}$ is not "private" anymore when k is large...
 - The average converges to the true answer.
 - In this case, the magnitude of the noise need to scale with k. (Not good)

• Need more than (independent noise + strong composition)

- If we only care the (numeric) queries that lie above a certain fixed threshold, we can use the sparse vector technique.
 - Discard the numeric answer (where a random noise is added) that lie significantly below the given threshold.

• Need more than (independent noise + strong composition)

• If not...?

- Need more than (independent noise + strong composition)
- Instead of adding independent noise, add correlated noise.
- "Handle a set of query as a whole"
 - SmallDB (offline algorithm): direct application of exponential mechanism + sampling bounds (learning theory)

- Need more than (independent noise + strong composition)
- Instead of adding independent noise, add correlated noise.
- "Handle a set of query as a whole"
 - MWU, Multiplicative weight update (online algorithm): direct application of the sparse vector technique

Other

- Possibly, more generalization
 - generalization of SmallDB/MWU: net mechanism/online learning alg
- Lower bounds and trade-offs results.
 - E.g., How inaccurate must responses be in order not to completely destroy any reasonable notion of privacy?
- Application to other fields
 - ML, mechanism design, combinatorial optimization and so on...