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Problem

* Given f:{+1}" - R,
verify if f =0, L.e, f(x) =0 for all x € {£1}".

« {£1}" is called a hypercube

« | found out that {0,1} is more widely used definition for a hypercube...

But note that there is no difference .



Problem

* Given f:{+1}" - R,
efficiently verify if f >0, i.e,, f(x) = 0 for all x € {+1}".

« {£1}" is called a hypercube

« “Given f" = Given a vector of coefficients of f

 but... there are infinite number of representation of f...



Multilinear Reduction

odd
[

even

« Reduction: x%% - x; and x;"°" - 1.

» After the reduction, we can view f as a vector f € R?"

where £(S) is the coefficient of [];c ;.

» Fact. Regardless of representation of f, the reduction outputs

a unique vector f, which implies f = f' iff f = f'.



Multilinear Reduction

* If the Input f satisfies deg(f) < d (after the reduction),

the dimension of f can be ¥{_o(}) < (d + 1)n% = n0@.



Problem

« Given f:{+1}" - R s.t. deg(f) < d,
efficiently verify if f >0, i.e,, f(x) = 0 for all x € {+1}".

« {£1}" is called a hypercube

. "Given f" = "Given f of f (WLOG)"



Problem

* Given f:{+1}" - R s.t. deg(f) < d and has rational coeffs,,
efficiently verify if f >0, i.e,, f(x) = 0 for all x € {+1}".

« {£1}" is called a hypercube

. "Given f" = "Given f of f (WLOG)"



Problem

* Given f:{+1}" - R s.t. deg(f) < d and has rational coeffs,,
efficiently verify it f =0



(Our) Application: Max-Cut Problem

o Let f;(x) = iz(i,j)e,;(xi = x]-)2 be the function over {+1}VI,
» find a bipartition of vertices; count the #edges on the cut.

« We want to find x* that maximizes f;(x).

* Or... we want to find the smallest ¢ s.t. ¢ — f;(x) = 0.

 Naive randomized alg.: for each i € V, assign +1 or —1 u.a.r.

 |E|/2 number of edges are on the cut (in expectation)



(Athor) Applications

 Graph densities; flag algebras (Cauchy-Schwarz proof);
« Quantum information

e and so on...



SoS (Sum-of-Squares) Certificate

d is even

A degree d SoS certificate for f is

a list of polynomial functions gy, ..., g-: {+1}"* - R s.t.
- deg(g;) <d/2 foralli=1,..,r and €.g., deg(x;x3x7 +x227 +2) =3

- f(x) = g% (x) + -+ + g% (x) for all x € {+1}™.



To Answer the Problem with SoS Cert...

« Suppose someone gives a degree d SoS certificate g4, ..., g,
* Does this efficiently verity f > 07

« Requirement:
* d and r should not be too large.
* #bits needed to represent coeffs. of g; should not be too large.

e Testing f = g# + -+ + g2 is done efficiently.

* Note that testing for all x € {£1}" is not efficient.



To Answer the Problem with SoS Cert...

« Suppose someone gives a degree d SoS certificate g4, ..., g,
* Does this efficiently verity f > 07

« Requirement:
* d and r should not be too large.
* #bits needed to represent coeffs. of g; should not be too large.

e Testing f = g# + -+ + g2 is done efficiently.

« Compare the coeffs. of Y g? after the multilinear reduction (n®@ comparisons)



Does f = 0 always have a SoS cert.?

* Yes, but with high degree.

* There exists a deg 2n SoS cert. of f = 0 where f: {+1}" - R.

- Consider g = ./f.
Since f has degree at most n WLOG, g is a deg 2n SoS cert.



Does f = 0 always have a SoS cert.?

* Yes, but with high degree.
* There exists a deg 2n SoS cert. of f = 0 where f: {+1}" - R.
- Consider g = ./f.

Since f has degree at most n WLOG, g is a deg 2n SoS cert.

* WRONG... since g can be non-polynomial.



Does f = 0 always have a SoS cert.?

» Correct proof) Consider {g,},e(+13» s.t. g,(x) = f(2) iff x = z.

*Then ¥, ci1n gz = f.

* Let g,(x) = \/f(z) (1+221x1)2 (1+sz2)2 (1+Z"x")2 .

2 2

« deg(g,) <n and g, is a polynomial.

* {92} 2e(+13m IS a degree 2n SoS certificate. QeD.



“Smaller” SoS certificate?

- If there exists a deg d SoS cert,, coeffs < 2poly(n®.

 Proof uses the fact that f is on the hypercube.

* How large is r if there exists a deg d SoS cert.?



Notations and Definitions

* Every vector is a column vector by default.
« p®2 =y v € RY, v92(i,j) = v; - vj
* (L,v) =(1,vyq,..,v,) € R

¢ (1,x)®%: all possible monomials with deg < d with redundancy.
P g

« Suppose x = (x1,x,) and d = 4.

(1,x)®4/2% = (1,x)®? = (1 X1, X2, X1, X1 (= 1), %1%, X3, Xp21, (x5 = 1))



Notations and Definitions

* A matrix M € R™*™ is positive semidefinite (PSD) (or M = 0)

iff M is symmetric and v"Mv > 0 for all v € R™.

* Fact. For all positive semidefinite matrix A € R™*",

1B € R™*" (m < n) s.t. A = BTB.



Theorem. f has a deg qu SoS cert. iff
3A > 0 sit. ((1, x)®d/2) A(1,x)®42 =
* Proof, = part) Let {g;} be a deg d SoS cert.

e Let v, be a vector s.t. g; = U;T(l,X)®d/2. Intuitively, v; is a coeff. vector of g;.
2 T
+ f =2 (1,08Y2)" = Fy(v] (1L,0)¥2) v (1, )94/

T
=% ((1L0)842) vl (1,x)8%2

= ((1, X)®d/2)T (Zl viviT)(L x)®d/2

This matrix is PSD.



Theorem. f has a deg qu SoS cert. iff
3A > 0 sit. ((1, x)®d/2) A(1,x)®42 =

T
* Proof, & part) f = ((1, x)®d/2) BTB(1,x)®%/2 for some B.
f f
+ f = (B(L,x)®2) B(1, 0892 = ||B(L, )|} o) of troers

* Let g; be the i-th entry of B(1,x)®4/2,

* Note deg(g;) <d/2 and f =),; g; and g; is polynomial. QeD,



Corollary

* If f has a deg d SoS cert,
then 3 a deg d SoS cert. g4, ..., g, where r < (n + 1)%/2.

» Recall “Let g; be the i-th entry of B(1,x)®%/2" part.



So far...

T
+1f 343 0 st. ((1,0)842) A1, x)8Y2 =7,

we can construct a deg d SoS cert. g4, ..., g, W/ r < (n + 1)4/2

« How to find such A?



T
Understanding ((1, x)®d/2) A1, x)®4/2

- Each element of (1,x)®%/2 corresponds to x5 := [];c¢x; for

some set S, i.e, (1,x)®9/2 can be indexed by monomials.

w/ redundancy

 Similarly, each row and column of A can be indexed by a set.

» Consider Ag ¢ which is §-th row and §'-th column of A.

It contributes to £(U), coeff. of xV in f where xV = x5 - x5'.

equivalence after the
multilinear reduction



Equivalent Statements

T
+ Find 4 > 0 sit. ((1,0)®%2) A(1,x)®/2 = f.

Find A >0s.t forallUc{],..,n}st |Ul <d,

2. vS,S’: As,s’ — f(U)-

/
xU=xS-x5



Semidefinite Programming (SDP)

« We can efficiently find A > 0 s.t. vU € {1, ...,n} s.t. |U| < d,

Y vss. Asg €[f(U) —¢€F(U) + €| for some e > 0.

!/

« Using SDP, we can efficiently solve the “relaxed” one.

maximize or minimize Z CijTi; linear objective
i
subject to Z aijkTij = bi, vk, linear constraints
i.J
Tij =Tji, V4], | w/ additional constraint that
X = (zij) = 0. a square symmetric matrix of variables is PSD




Semidefinite Programming (SDP)

e Let A’ be the returned matrix.
We know f' st. f/(U) =% s¢. Agg has adeg d SoS cert.

/
xU=xS-x5

e Claim. f + e(n + 1)% also has a deg d SoS cert.
» Proof) Since for any U st. |U| < d, |[f(U) — f'(U)| < e
we have Y. yi<qlf(U) — F1(D)] < e(n + D

e Claim. For any h: {+1}"* - R w/ deg(h) < d,
we can show h + Y. .y<a|R(U)| has a deg d SoS cert. (proof omitted)

c f—f"+e(n+1)% and f’ both have a deg d SoS cert. QED.



Theorem.

* There is an efficient algorithm that
if the given f:{+1}" - R (with deg(f) < d) has a deg d SoS
cert., then the algorithm outputs a deg d SoS cert. for f + €'



Max-Cut Problem

e Recall fp(x) := iZ(i’j)eE(xi — xj)z is the function over {+1}IV!,

e Let ¢’ be the (almost) smallest value s.t.
the alg. outputs a deg 2 SoS cert. for ¢’ — fz(x) + €.

« The alg. didn't return a deg 2 SoS cert. for ¢"" — f;(x) + €’ for ¢"" < .

» Our hope is that « - fz(x*) < ¢'(< fz(x*)) for some a < 1.



Theorem.

* There is an efficient algorithm that
if the given f:{+1}" - R (with deg(f) < d) has a deg d SoS
cert., then the algorithm outputs a deg d SoS cert. for f + €'

* Even if f does not admit a deg d SoS cert,

we want some (efficient) “dual object” that we can utilize.



Duality anad
Sum-of-Squares Algorithm



Geometric Intuition

- What does it mean that A deg d SoS cert. for some f?
e Let SoS,; == {f:{+1}" - R | f hasadegd SoS cert. }

* Observe that SoS, is a convex cone, i.e., closed under convex

combination & nonnegative scaling.

 If f & SoS,, then there should be a separating hyperplane!

through the origin



Geometric Intuition

* We can represent a hyperplane by u:{+1}"* - R.

* WLOG, 2Zyeprayn t(x) = 1.
- Consider the halfspace H that contains SoS; but not £, i.e,
H = {h:{£1}" > R Xyerr1yn u(x)h(x) = 0}.
 If u(x) = 0 for all x, u can be seen as a prob. distribution.

For all f € S0Sy, Exy[f(x)] =0 but E,_,[f(x)] <0. 4552

dual object!



Geometric Intuition

* We can represent a hyperplane by u:{+1}"* - R.

° WLOG, ZXE{il}n ,U(X) = 1.
- Consider the halfspace H that contains SoS; but not f, i.e.,
H = {h:{£1}" > R Xyerr1yn u(x)h(x) = 0}.

* What if u(x) < 0 for some x, i.e.,, not a prob. dist.?

We will see that u still behaves prob.-like distribution.
(pseudo)



(More) Notations and Definitions

« Formal expectation of f: {+1}" - R w.r.t. a distribution u
Bulf1= ) n(0f ()

1 1S not necessarily a probability distribution!
(Therefore, x~u is not well defined.)




(More) Notations and Definitions

* A deg d pseudo-distribution (over the hypercube)

Is a function u (over the hypercube) s.t.

- E,[1] = 1, (i.e., the sum of entries of u is 1) and

- for every polynomial g of deg(g) < d/2, E,[g*] = 0.

Captures the “separating hyperplane condition”

* A deg d pseudo-expectation

Is a formal expectation w.rt. a deg d pseudo-distribution.



Pseudo-distribution as a dual object

* We will see a pseudo-distribution will serve as a dual object.

 Technical issue: How can we represent a pseudo-distribution?

* Answer: For all deg d pseudo-dist. g,
there is a deg d pseudo-dist. ' with deg(u') < d.

-> use multilinear reduction



Duality of SoS Cert. and Pseudo-dist.

* Theorem. For every f:{£1}" - R and every even d € N,

f € SoS, iff every deg d pseudo—dist satisfies E,[f] = 0.

(over {+1}"
* Proof, = part) f =Y, g; where deg(g;) <d/2. E,[f] =X;E,[9°] = 0.

« Proof, & part) Sps f & SoS,;. Consider a separating hyperplane p.
We show p is a deg d pseudo-dist. Suffices to show E,[1] > 0.

We have E,|f] < 0. Choose large enough L sit. E,|f + L] = 0.

Since L - E,[1] = E,[L] we have E,[1] = —E,[f]|/L and RHS>0. QED.



SoS Algorithm

« Theorem. There is an efficient algorithm that, given f,

either  outputs a deg d SoS cert. for f + €’ or

outputs a pseudo-dist. u s.t. E,[f] < €".

 We know there is a pseudo-dist. u s.t. E,[f] < 0 if f & SoS,
but we don't know how to find it efficiently. Instead, as in finding a

SoS cert.,, we can efficiently compute the "approximate” pseudo-dist.
using SDP.



Side note) Equiv. Defn. of Pseudo-dist.

T
e | ot Md/z = (1, x)®d/2 ((1,X)®d/2) .

element-wise pseudo-expectation

- i is a deg d pseudo-dist. iff £,[1] =1 and E,[My/,] = 0.

« proof) Consider any polynomial g w/ deg(g) < d/2.

~

* E, [9°] = Eu [(ZS:ISISd/Z g(s)xS)Zl = EM[ZS,S’:ISI,IS’ISd/Z g(s)g(sr)xsxs’]

= s stisiis'lzar2 I GEVE[x°x" ] = (§)"May2(9). QED

changing the order
of summation



Max-Cut Algorithm



Max-Cut Problem

» Suppose ¢' — f; € SoS, but ¢’ — €' — f; & So0S,.
« The sum-of-squares alg. outputs a deg 2 pseudo-dist. u over

the hypercube st. E,[c" — € — fz] < €', i.e, E [f;] > ¢’ — 2€.

e If u is an actual prob. dist., we are happy.

* E,lfe] = Elfe] > fo(x*) — 2¢€

* If not, “round” a pseudo-dist. into an actual prob. dist. u'.



Max-Cut Problem

* Theorem. For every G and deg 2 pseudo-dist. u over the

hypercube, there exists a prob. dist. u’ over the hypercube s.t.

E‘u' [fG] = aEM[fG]
where a = 0.878 ... (to be defined more precisely later).

 Corollary 1. Finding u' efficiently leads to an (a — 2€")-approx. alg.
(or 0.878-approx. alg.)



Max-Cut Problem

* Theorem. For every G and deg 2 pseudo-dist. u over the

hypercube, there exists a prob. dist. u’ over the hypercube s.t.

Eu’ [fG] = agu[fa]

where a = 0.878 ... (to be defined more precisely later).

« Corollary 2. fo(x*)/a — f; € So0S,.
« Sps not. Then there is a deg 2 pseudo-dist. u s.t. E'u[fG(x*)/a — fe] <O.

» By the above thm, 3y’ sit. aE,[f;] < E,/[f;]. Contradiction. QED.



Proof of the Theorem.

* (To be filled out)



Final Remarks
CSP UGC and SoS



2-CSP (Constraint Satisfaction Problems)

* x4, ..., X, are variables; take values in some finite alphabet %.

The number 2 of 2-CSP comes from here

* (xilixiz)'Ai are l_th ConStralntS; 1 S l S m. Constraints consist of at most 2 variables.

* | will call 4; "allowable assignment” of x; and x;,.

* We give an assignment x’ € £,
We say i-th constraint is satisfied if (x; ,x; ) € A;.

« Goal: find an assignment that maximizes #satisfied constraints.



2-CSP (Constraint Satisfaction Problems)

« Max-Cut

« Variable for each vertex; X = {+1}
for each e = (i, ), constraint = (x;,x;),{(1,—1), (-1,1)}.

« Max-2-Sat
 Variable for each vertex; X = {T, F};
for each constraint, (x;,,x;,), {(T,F), (F,T), (T, T)}
« Max-3-Coloring
« Variable for each vertex; X = {R, G, B}; for each e = (i, ),
constraint = (x;,x;),{(R,6), (R,B), (G,R),(G,B),(B,R), (B, G)}.



Unique 2-CSP

» A constraint (x;,,x;, ), 4; is unique if for any assignment to

one variable (x; ), there is exactly one assignment to the

other variable (x;,) that makes the constraint satisfied.

« 2-CSP is called unigue, if all constraints are unique.

« Max-Cut is unique but Max-2-Sat or Max-3-coloring are not unique.

* Unigue game (UG) is another name for unique 2-CSP.



(c,s)-CSP

 Given a CSP instance, decide if
- there is an assignment that satisfies at least ¢ - m constraints

- for any assignment, #satisfied constraints is at most s - m.

* Obs. (1,1 — 1/m)-CSP is checking the satisfiability.

« Obs. (1,1 — 1/m)-UG is polytime solvable.



Unigue Game Conjecture (Khot'02)

* For every sufficiently small € > 0,
there is a large enough constant k such that
(1 —¢€,¢)-UG is NP-hard where |Z]| = k.

* Obs. Uniform random assignment satisfies 1/k fraction.

 This implies k > 1/e.



Under UGC,

e for every € > 0, (a + €)-approx for Max-Cut is NP-hard
* There are many similar results such as
Ve > 0, (2 — e)-approx for Vertex Cover is NP-hard, ...
* It turns out that (by Raghavendra’08)
for all CSP, a “natural” SDP (deg 2 SoS) + “natural” rounding
IS optimal.

+ And it matches the integrality gap.



Conclusion

 For deg 2 SoS, we know the exact power for CSP.

e deg d SoS for d = 4,6, ...7 Nothing known.

« SoS proof technique in other fields?
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